Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 832 Accesses

Abstract

The growing concern about global warming has increased interest in the geological storage of carbon dioxide (CO2).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Khosrokhavar, R., Elsinga, G., Mojaddam, A., Farajzadeh, R., & Bruining, J. (2011). Visualization of natural convection flow of super critical CO2 in water by applying Schlieren method. In SPE EUROPEC/EAGE Annual Conference and Exhibition.

    Google Scholar 

  2. British Petroleum. (2013). BP Energy Outlook 2030.

    Google Scholar 

  3. Exxon Mobil. (2013). The Outlook for Energy: A View to 2040.

    Google Scholar 

  4. Shell. (2013). New Lens Scenarios: A Shift in Perspective for a World in Transition.

    Google Scholar 

  5. Metz, B., Davidson, O., De Coninck, H., & Loos, M., & Meyer, L. (2005). Carbon dioxide capture and storage.

    Google Scholar 

  6. Healy, J. K., & Tapick, J. M. (2004). Climate change: It’s not just a policy issue for corporate counsel-it’s a legal problem. Columbia Journal of Environmental Law, 29, 89.

    Google Scholar 

  7. IPCC. (2014). IPCC, 2014: Summary for policymakers. In O. Edenhofer, et al. (Eds.), Climate Change 2014, Mitigation of Climate Change. 2014, Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change: Cambridge, United Kingdom and New York, NY, USA.

    Google Scholar 

  8. Farajzadeh, R., Zitha, P. L., & Bruining, J. (2009). Enhanced mass transfer of CO2 into water: experiment and modeling. Industrial and Engineering Chemistry Research, 48(13), 6423–6431.

    Article  Google Scholar 

  9. Metz, B. (2007) Climate Change 2007-Mitigation of climate change: Working Group III Contribution to the fourth assessment report of the IPCC (Vol. 4). Cambridge: Cambridge University Press.

    Google Scholar 

  10. Wilson, E. J., Morgan, M. G., Apt, J., Bonner, M., Bunting, C., Gode, J., et al. (2008). Regulating the geological sequestration of CO2. Environmental Science and Technology, 42(8), 2718–2722.

    Article  Google Scholar 

  11. Schumpeter, J.A. (2013). Capitalism, socialism and democracy. London: Routledge.

    Google Scholar 

  12. Piketty, T. (2014). Capital in the 21st century. Cambridge: Harvard University Press.

    Google Scholar 

  13. Khosrokhavar, R., Schoemaker, C., Battistutta, E., Wolf, K.-H. A., & Bruining, J. (2012). Sorption of CO2 in shales using the manometric set-up. In SPE Europec/EAGE Annual Conference. 2012. Society of Petroleum Engineers.

    Google Scholar 

  14. Eftekhari, A. A., Van Der Kooi, H., & Bruining, H. (2012). Exergy analysis of underground coal gasification with simultaneous storage of carbon dioxide. Energy, 45(1), 729–745.

    Article  Google Scholar 

  15. Bachu, S. (2002). Sequestration of CO2 in geological media in response to climate change: road map for site selection using the transform of the geological space into the CO2 phase space. Energy Conversion and Management, 43(1), 87–102.

    Article  Google Scholar 

  16. Mosher, K., He, J., Liu, Y., Rupp, E., & Wilcox, J. (2013). Molecular simulation of methane adsorption in micro-and mesoporous carbons with applications to coal and gas shale systems. International Journal of Coal Geology, 109, 36–44.

    Article  Google Scholar 

  17. Davis, S. J., Caldeira, K., & Matthews, H. D. (2010). Future CO2 emissions and climate change from existing energy infrastructure. Science, 329(5997), 1330–1333.

    Article  Google Scholar 

  18. Benson, S. M., & Orr, F. M. (2008). Carbon dioxide capture and storage. MRS Bulletin, 33(04), 303–305.

    Article  Google Scholar 

  19. Wilcox, J. (2012). Carbon capture. New York: Springer.

    Google Scholar 

  20. Bachu, S., Bonijoly, D., Bradshaw, J., Burruss, R., Holloway, S., Christensen, N. P., & Mathiassen, O. M. (2007). CO2 storage capacity estimation: Methodology and gaps. International Journal of Greenhouse Gas Control, 1(4), 430–443.

    Article  Google Scholar 

  21. Xu, T., Apps, J. A., & Pruess, K. (2004). Numerical simulation of CO2 disposal by mineral trapping in deep aquifers. Applied Geochemistry, 19(6), 917–936.

    Article  Google Scholar 

  22. Pruess, K., & Garcia, J. (2002). Multiphase flow dynamics during CO2 disposal into saline aquifers. Environmental Geology, 42(2–3), 282–295.

    Article  Google Scholar 

  23. Khosrokhavar, R., Elsinga, G., Farajzadeh, R., & Bruining, H. (2014). Visualization and investigation of natural convection flow of CO2 in aqueous and oleic systems. Journal of Petroleum Science and Engineering 122, 230–239.

    Google Scholar 

  24. Gmelin, L. (1973). Gmelin Handbuch der anorganischen Chemie, 8. Auflage. Kohlenstoff, Teil C3, Verbindungen. ISBN 3-527-81419-1.

    Google Scholar 

  25. Parkhurst, D. L., & Appelo, C. (2013). Description of input and examples for PHREEQC version 3- A computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. US Geological Survey Techniques and Methods, Book 6, Modeling Techniques.

    Google Scholar 

  26. Rodosta, T., Hull, J., & Zoback, M. (2013). Interdisciplinary Investigation of CO 2 Sequestration in Depleted Shale Gas Formations, 2013, U.S. Department of Energy.

    Google Scholar 

  27. Nicot, J.-P., & Duncan, I. J. (2012). Common attributes of hydraulically fractured oil and gas production and CO2 geological sequestration. Greenhouse Gases: Science and Technology, 2(5), 352–368.

    Article  Google Scholar 

  28. International Energy Agency. (2013). CO 2 Emissions From Fuel Combustion: Highlights (2013th ed.). International Energy Agency: France.

    Google Scholar 

  29. Khosrokhavar, R., Wolf, K.-H., & Bruining, H. (2014). Sorption of CH4 and CO2 on a carboniferous shale from Belgium using a manometric setup. International Journal of Coal Geology, 128, 153–161.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roozbeh Khosrokhavar .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Khosrokhavar, R. (2016). Introduction. In: Mechanisms for CO2 Sequestration in Geological Formations and Enhanced Gas Recovery. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-23087-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-23087-0_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-23086-3

  • Online ISBN: 978-3-319-23087-0

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics