Skip to main content

Nonperturbative Nonlinear Maxwell–Schrödinger Models for Intense Laser Pulse Propagation

  • Chapter
Book cover Laser Filamentation

Part of the book series: CRM Series in Mathematical Physics ((CRM))

  • 989 Accesses

Abstract

This paper is devoted to the derivation of nonperturbative nonlinear models for intense and short laser pulses propagating in a gas. Starting from a computationally complex micro-macro Maxwell–Schrödinger–Plasma model (Lorin et al., Comput Phys Commun 177(12):908, 2007; Lorin et al., Commun Comput Phys 9(2):406, 2011) we derive an optics model, where the nonlinear response is nonperturbatively computed using a nonlinear evolution evolution equation of polarization. Only initial data of the polarization equation are computed at the microscopic level via TDSEs, thus providing for an efficient algorithm in Maxwell–Schrödinger’s problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. E. Lorin, M. Lytova, A. Memarian, A.D. Bandrauk, J. Phys. A 48(10), 105201 (2015)

    Article  MathSciNet  ADS  Google Scholar 

  2. T. Brabec, F. Krausz, Rev. Mod. Phys. 72(2), 545 (2000)

    Article  ADS  Google Scholar 

  3. A.V. Husakou, J. Herrmann, Phys. Rev. Lett. 87(20), 203901 (2001)

    Article  ADS  Google Scholar 

  4. A. Couairon, A. Mysyrowicz, Phys. Rep. 441(2–4), 47 (2007)

    Article  ADS  Google Scholar 

  5. L. Bergé, S. Skupin, R. Nuter, J. Kasparian, J.P. Wolf, Rep. Prog. Phys. 70(10), 1633 (2007)

    Article  ADS  Google Scholar 

  6. M. Kolesik, J.V. Moloney, Rep. Prog. Phys. 77(1), 016401 (2014)

    Article  ADS  Google Scholar 

  7. I. Babushkin, L. Bergé, J. Math. Phys. 55(3), 032903 (2014)

    Article  MathSciNet  ADS  Google Scholar 

  8. M. Kolesik, J.V. Moloney, Phys. Rev. E 70(3), 036604 (2004)

    Article  ADS  Google Scholar 

  9. S. Skupin, L. Bergé, Physica D 220(1), 14 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  10. S. Champeaux, L. Bergé, D. Gordon, A. Ting, J. Peñano, P. Sprangle, Phys. Rev. E 77(3), 036406 (2008)

    Article  ADS  Google Scholar 

  11. A. Vinçotte, L. Bergé, Physica D 223(2), 163 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  12. M. Kolesik, E.M. Wright, J.V. Moloney, Opt. Lett. 35(15), 2550 (2010)

    Article  ADS  Google Scholar 

  13. L. Bergé, C. Gouédard, J. Schjodt-Eriksen, H. Ward, Physica D 176(3–4), 181 (2003)

    Article  ADS  MATH  Google Scholar 

  14. P. Béjot, J. Kasparian, S. Henin, V. Loriot, T. Vieillard, E. Hertz, O. Faucher, B. Lavorel, J.P. Wolf, Phys. Rev. Lett. 104(10), 103903 (2010)

    Article  ADS  Google Scholar 

  15. A. Spott, A. Jaroń-Becker, A. Becker, Phys. Rev. A 90(1), 013426 (2014)

    Article  ADS  Google Scholar 

  16. M. Richter, S. Patchkovskii, F. Morales, O. Smirnova, M. Ivanov, New J. Phys. 15(8), 083012 (2013)

    Article  ADS  Google Scholar 

  17. C. Köhler, R. Guichard, E. Lorin, S. Chelkowski, A.D. Bandrauk, L. Bergé, L., S. Skupin, Phys. Rev. A 87(4), 043811 (2013)

    Google Scholar 

  18. P. Béjot, E. Cormier, E. Hertz, B. Lavorel, J. Kasparian, J.P. Wolf, O. Faucher, Phys. Rev. Lett. 110(4), 043902 (2013)

    Article  ADS  Google Scholar 

  19. P. Polynkin, M. Kolesik, E.M. Wright, J.V. Moloney, Phys. Rev. Lett. 106(15), 153902 (2011)

    Article  ADS  Google Scholar 

  20. T. Morishita, A.T. Le, Z. Chen, C.D. Lin, Phys. Rev. Lett. 100(1), 013903 (2008)

    Article  ADS  Google Scholar 

  21. E. Lorin, S. Chelkowski, A. Bandrauk, Comput. Phys. Commun. 177(12), 908 (2007)

    Article  ADS  MATH  Google Scholar 

  22. E. Lorin, S. Chelkowski, A. Bandrauk, Commun. Comput. Phys. 9(2), 406 (2011)

    Google Scholar 

  23. E. Lorin, S. Chelkowski, A. Bandrauk, in High-Dimensional Partial Differential Equations in Science and Engineering, vol. 41, ed. by A. Bandrauk, M.C. Delfour, C. Le Bris. CRM Proc. Lecture Notes (American Mathematical Society, Providence, 2007), pp. 161–182

    Google Scholar 

  24. E. Lorin, S. Chelkowski, E. Zaoui, A. Bandrauk, Physica D 241(12), 1059 (2012)

    Article  ADS  Google Scholar 

  25. P.B. Corkum, Phys. Rev. Lett. 71(13), 1994 (1993)

    Article  ADS  Google Scholar 

  26. A.D. Bandrauk, S. Chelkowski, S. Goudreau, J. Mod. Opt. 52(2–3), 411 (2005)

    Article  ADS  MATH  Google Scholar 

  27. R.W. Boyd, Nonlinear Optics, 2nd edn. (Academic, San Diego, 2003)

    Google Scholar 

  28. A.D. Bandrauk, F. Fillion-Gourdeau, E. Lorin, J. Phys. B 46(15), 153001 (2013)

    Article  ADS  Google Scholar 

  29. E. Lorin, A.D. Bandrauk, J. Comput. Sci. 3(3), 159 (2012)

    Article  Google Scholar 

  30. H.S. Nguyen, A. Suda, K. Midorikawa, Phys. Rev. A 60(3), 2587 (1999)

    Article  ADS  Google Scholar 

  31. J. Crank, P. Nicolson, Adv. Comput. Math. 6, 207 (1996)

    Article  MathSciNet  Google Scholar 

  32. K.J. Yuan, A.D. Bandrauk, J. Phys. B 45(7), 074001 (2012)

    Article  ADS  Google Scholar 

  33. B. Bidégaray-Fesquet, Hiérarchie de modèles en optique quantique. De Maxwell-Bloch à Schrödinger non-linéaire. Mathématiques and Applications, vol. 49 (Springer, Berlin, 2006)

    Google Scholar 

Download references

Acknowledgements

The authors thank the CRM (Centre de recherches mathématiques, Montréal), the KITP (Kavli Institute of Theoretical Physics, University of California, Santa Barbara) for supporting this research via workshops and Compute Canada for access to high performance parallel computers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Lorin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Lorin, E., Lytova, M., Bandrauk, A.D. (2016). Nonperturbative Nonlinear Maxwell–Schrödinger Models for Intense Laser Pulse Propagation. In: Bandrauk, A., Lorin, E., Moloney, J. (eds) Laser Filamentation. CRM Series in Mathematical Physics. Springer, Cham. https://doi.org/10.1007/978-3-319-23084-9_7

Download citation

Publish with us

Policies and ethics