Skip to main content

Blowing Up Solutions to the Zakharov System for Langmuir Waves

  • Chapter
Laser Filamentation

Part of the book series: CRM Series in Mathematical Physics ((CRM))

  • 992 Accesses

Abstract

Langmuir waves take place in a quasi-neutral plasma and are modeled by the Zakharov system. The phenomenon of collapse, described by blowing up solutions, plays a central role in their dynamics. We present in this article a review of the main mathematical properties of blowing up solutions. They include conditions for blowup in finite or infinite time, description of self-similar singular solutions and lower bounds for the rate of blowup of certain norms associated with the solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. V.E. Zakharov, Sov. Phys. JETP 35(5), 908 (1972)

    ADS  Google Scholar 

  2. V.E. Zakharov, A.F. Mastryukov, V.S. Synakh, Sov. J. Plasma Phys. 1, 339 (1975)

    ADS  Google Scholar 

  3. P.A. Robinson, Rev. Mod. Phys. 69, 507 (1997)

    Article  ADS  Google Scholar 

  4. L. Bergé, Phys. Rep. 303(5–6), 259 (1998)

    Article  MathSciNet  ADS  Google Scholar 

  5. C. Sulem, P.L. Sulem, The Nonlinear Schrödinger Equation. Self-focusing and Wave Collapse. Applied Mathematical Sciences, vol. 139 (Springer, New York, 1999)

    Google Scholar 

  6. B. Texier, Arch. Ration. Mech. Anal. 184(1), 121 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  7. C. Sulem, P.L. Sulem, C. R. Acad. Sci. Paris Sér. A-B 289(3), A173 (1979)

    MathSciNet  ADS  Google Scholar 

  8. H. Added, S. Added, C. R. Acad. Sci. Paris Sér. I Math. 299(12), 551 (1984)

    MathSciNet  MATH  Google Scholar 

  9. S.H. Schochet, M.I. Weinstein, Commun. Math. Phys. 106(4), 569 (1986)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  10. T. Ozawa, Y. Tsutsumi, Publ. Res. Inst. Math. Sci. 28(3), 329 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  11. L. Glangetas, F. Merle, Commun. Math. Phys. 160(1), 173 (1994)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  12. L. Glangetas, F. Merle, Commun. Math. Phys. 160(2), 349 (1994)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. J. Bourgain, J. Colliander, Int. Math. Res. Not. 1996(11), 515 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  14. J. Ginibre, Y. Tsutsumi, G. Velo, J. Funct. Anal. 151(2), 384 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  15. N. Tzvetkov, Differ. Integr. Equ. 13(4–6), 423 (2000)

    MathSciNet  MATH  Google Scholar 

  16. H. Pecher, Int. Math. Res. Not. 2001(19), 1027 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  17. J. Colliander, J. Holmer, N. Tzirakis, Trans. Am. Math. Soc. 360(9), 4619 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  18. I. Bejenaru, S. Herr, J. Holmer, D. Tataru, Nonlinearity 22(5), 1063 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  19. I. Bejenaru, S. Herr, J. Funct. Anal. 261(2), 478 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  20. J. Ginibre, G. Velo, Hokkaido Math. J. 35(4), 865 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  21. Z. Hani, F. Pusateri, J. Shatah, Commun. Math. Phys. 322(3), 731 (2013)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  22. F. Merle, Commun. Pure Appl. Math. 49(8), 765 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  23. W.A. Strauss, Commun. Math. Phys. 55(2), 149 (1977)

    Article  ADS  MATH  Google Scholar 

  24. Z. Guo, K. Nakanishi, Int. Math. Res. Not. IMRN 2014(9), 2327 (2014)

    MathSciNet  MATH  Google Scholar 

  25. F. Merle, Commun. Math. Phys. 175(2), 433 (1996)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  26. V.E. Zakharov, L.N. Shur, Sov. Phys. JETP 54(6), 1064 (1981)

    Google Scholar 

  27. H. Berestycki, P.L. Lions, Arch. Ration. Mech. Anal. 82(4), 313 (1983)

    MathSciNet  MATH  Google Scholar 

  28. H. Berestycki, P.L. Lions, Arch. Ration. Mech. Anal. 82(4), 347 (1983)

    MathSciNet  MATH  Google Scholar 

  29. L. Bergé, Luc, G. Pelletier, D. Pesme, Phys. Rev. A 42(8), 4962 (1990)

    Google Scholar 

  30. M. Landman, G.C. Papanicolaou, C. Sulem, P.L. Sulem, X.P. Wang, Phys. Rev. A 46(12), 7869 (1992)

    Article  ADS  Google Scholar 

  31. M.I. Weinstein, Commun. Math. Phys. 87(4), 567 (1982/1983)

    Google Scholar 

  32. O.B. Budneva, V.E. Zakharov, V.S. Synakh, Sov. J. Plasma Phys. 1, 335 (1975)

    ADS  Google Scholar 

  33. V. Masselin, Adv. Differ. Equ. 6(10), 1153 (2001)

    MathSciNet  MATH  Google Scholar 

  34. J. Holmer, Electron. J. Differ. Equ. 24, (2007)

    Google Scholar 

  35. J. Colliander, M. Czubak, C. Sulem, J. Hyperbolic Differ. Equ. 10(3), 523 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  36. F.B. Weissler, Isr. J. Math. 38(1–2), 29 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  37. T. Cazenave, F.B. Weissler, Nonlinear Anal. 14(10), 807 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  38. J. Bourgain, Geom. Funct. Anal. 3(2), 107 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  39. F. Haas, P.K. Shukla, Phys. Rev. E 79(6), 066402 (2009)

    Article  ADS  Google Scholar 

  40. G. Simpson, C. Sulem, P.L. Sulem, Phys. Rev. E 80(5), 056405 (2009)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

MC is partially supported by grant #246255 from the Simons Foundation. CS is partially supported by NSERC through grant number 46179–13 and Simons Foundation Fellowship #265059.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Catherine Sulem .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Cher, Y., Czubak, M., Sulem, C. (2016). Blowing Up Solutions to the Zakharov System for Langmuir Waves. In: Bandrauk, A., Lorin, E., Moloney, J. (eds) Laser Filamentation. CRM Series in Mathematical Physics. Springer, Cham. https://doi.org/10.1007/978-3-319-23084-9_3

Download citation

Publish with us

Policies and ethics