Skip to main content

Microbial Suppressiveness of Pythium Damping-Off Diseases

  • Chapter

Part of the book series: Soil Biology ((SOILBIOL,volume 46))

Abstract

Damping-off diseases incited by different species of Pythium are a persistent problem worldwide, often resulting in reduced yields and occasionally resulting in major crop damage. There have been increasing restrictions on the use of chemical fungicides, and the development of disease-suppressive biocontrol agents has become a major goal of horticultural industry. Consequently, investigation of the population dynamics and tripartite interaction between the plant, pathogen and antagonist is crucial to understand the mechanistic pathway of biocontrol agents (BCA).

Whereby there are two different antagonistic mechanisms: firstly, direct mechanism resulting from physical contact and/or a high degree of selectivity for the pathogen by the mechanism expressed by the BCA (e.g., hyperparasitism, antibiotics, lytic enzymes, and other by-products as well as suppression of germination) and, secondly, indirect mechanism resulting from activities that do not involve sensing or targeting a pathogen by the BCA through two mechanisms, competition and stimulation of plant host defense. Additionally, some microorganisms exhibited one mechanism, while others may work through several mechanisms. Several microbial groups have successfully exploited in the production of novel bioactive products. There are many ways for BCA application either alone or in combination with each other. However, there is still great potential for the discovery of microbes with increased biocontrol abilities.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abdelzaher HMA (2004) Occurrence of damping-off of wheat caused by Pythium diclinum tokunaga in El-minia, Egypt and its possible control by Gliocladium roseum and Trichoderma harzianum. Arch Phytopathol Plant Prot 37:147–159

    Article  Google Scholar 

  • Agrios GN (1997) Induced structural and biochemical defenses, 4th edn, Plant pathology. Academic, London, pp 93–114

    Google Scholar 

  • Baker KF (1957) Damping-off and related diseases . The UC system for producing healthy container-grown plants. California agriculture experimental station extension service manual 23. Australian Nurserymen’s Association, Parramatta, Australia, pp 34–51

    Google Scholar 

  • Benhamou N, Gagné S, Le Quéré D, Dehb L (2000) Bacterial-mediated induced resistance in cucumber: beneficial effect of the endophytic bacterium Serratia plymuthica on the protection against infection by Pythium ultimum. Phytopathology 90(1):45–56

    Article  CAS  PubMed  Google Scholar 

  • Bergsma-Vlami M, Prins ME, Raaijmakers JM (2005) Influence of plant species on population dynamics, genotypic diversity and antibiotic production in the rhizosphere by indigenous Pseudomonas spp.. FEMS Microbiol Ecol 52:59–69

    Article  CAS  PubMed  Google Scholar 

  • Bonneau L, Huguet S, Wipf D, Pauly N, Truong HN (2013) Combined phosphate and nitrogen limitation generates a nutrient stress transcriptome favorable for arbuscular mycorrhizal symbiosis in Medicago truncatula. New Phytol 199:188–202

    Article  CAS  PubMed  Google Scholar 

  • Boulter JI, Trevors JT, Boland GJ (2002) Microbial studies of compost: bacterial identification, and their potential for turfgrass pathogen suppression. World J Microbiol Biotechnol 18(7):661–671

    Article  CAS  Google Scholar 

  • Broadbent P, Baker K, Waterworth Y (1971) Bacteria and actinomycetes antagonistic to fungal root pathogens in Australia. Aust J Biol Sci 24:925–944

    CAS  PubMed  Google Scholar 

  • Callan NW, Mathre DE, Miller JB (1990) Bio-priming seed treatment for biological control of Pythium ultimum pre-emergence damping-off in sh-2 sweet corn. Plant Dis 74:368–372

    Article  Google Scholar 

  • Chairat Y, Pasura A (2013) Isolation and identification of rhizobacteria having inhibitory capability on pathogenic fungi, Pythium sp.. J Sci Technol Human 11(2):117–127

    Google Scholar 

  • Chen W, Hoitink HAJ, Schmitthenner AF, Tuovinen OH (1988) The role of microbial activity in suppression of damping-off caused by Pythium ultimum. Phytopathology 78:314–322

    Article  Google Scholar 

  • Chen R, Harman GE, Afio COMI, Cheng SG (2005) Proteins related to the biocontrol of Pythium damping-off in maize with Trichoderma harzianum. J Integr Plant Biol 47(8):988–997

    Article  CAS  Google Scholar 

  • Chisholm ST, Coaker G, Day B, Staskawicz BJ (2006) Host-microbe interactions: shaping the evolution of the plant immune response. Cell 124:803–814

    Article  CAS  PubMed  Google Scholar 

  • Cook R, Baker KF (1983) The nature and practice of biological control of plant pathogens. American Phytopathological Society, St Paul, MN, p 539

    Google Scholar 

  • Cook DWM, Long PG (1995) Screening of microbes that attach to Botrytis cinerea hyphae before tests of biocontrol activity. In: XIII international plant protection congress, The Hague (Eur J Plant Pathol Abstract no 503)

    Google Scholar 

  • Cunniffe N, Gilligan C (2011) A theoretical framework for biological control of soil-borne plant pathogens: identifying effective strategies. J Theor Biol 278:32–43

    Article  PubMed  Google Scholar 

  • Das S, Biswapati M, Maity D, Raj SK (2002) Different techniques of seed treatment in the management of seedling disease of sugar beet. J Mycopathol Res 40(2):175–178

    Google Scholar 

  • Douglas W (1987) Adhesion to surfaces. In: Rose AH, Harrison JS (eds) The yeast, vol II. Academic, New York

    Google Scholar 

  • Elad Y (1995) Mycoparasitism. In: Kohmoto K, Singh US, Singh RP (eds) Pathogenesis and host specificity in plant diseases: histopathological, biochemical, genetic and molecular basis, vol 2, Eukaryotes. Elsevier Science, Oxford, pp 289–307

    Google Scholar 

  • Elad Y, Chet I, Henis Y (1982) Degradation of plant pathogenic fungi by Trichoderma harzianum. Can J Microbiol 28:719–725

    Article  CAS  Google Scholar 

  • El-Katatny MH, Gudelj M, Robra KH, Elnaghy MA, Gubitz GM (2001) Characterization of a chitinase and an endo-b-1,3- glucanase from Trichoderma harzianum Rifai T24 involved in control of the phytopathogen Sclerotium rolfsii. Appl Microbiol Biotechnol 56:137–143

    Article  CAS  PubMed  Google Scholar 

  • Ellis RJ, Timms-Wilson TM, Beringer JE, Rhodes D, Renwick A, Stevenson L, Bailey MJ (1999) Ecological basis for biocontrol of damping-off disease by Pseudomonas fluorescens 54/96. J Appl Microbiol 87(3):454–463

    Article  PubMed  Google Scholar 

  • El-Tarabily KA (2006) Rhizosphere-competent isolates of streptomycete and non-streptomycete actinomycetes capable of producing cell-wall degrading enzymes to control Pythium aphanidermatum damping-off disease of cucumber. Can J Bot 84:211–222

    Article  CAS  Google Scholar 

  • Faltin F, Lottmann J, Grosch R, Berg G (2004) Strategy to select and assess antagonistic bacteria for biological control of Rhizoctonia solani Kuhn. Can J Microbiol 50:811–820

    Article  CAS  PubMed  Google Scholar 

  • Fldd Y, Chet L (1987) Possible role of competition for nutrients in biocontrol of Pythium damping-off by bacteria. Phytopathology 77:190–195

    Article  Google Scholar 

  • Flint ML (1998) Pests of the garden and small farm: a grower’s guide to using less pesticide. University of California Agriculture and Natural Resources Publication, Oakland, p 3332

    Google Scholar 

  • Fravel DR (2005) Commercialization and implementation of biocontrol. Annu Rev Phytopathol 43:337–359

    Article  CAS  PubMed  Google Scholar 

  • Fravel DR, Connick WJJ, Lewis JA (1998) Formulation of microorganisms to control plant diseases. In: Burges HD (ed) Formulation of microbial biopesticides: beneficial microorganisms, nematodes and seed treatments. Kluwer Academic, Dordrecht, pp 187–202

    Chapter  Google Scholar 

  • Goud MJP, Muralikrishnan V (2009) Biological control of three phytopathogenic fungi by Pseudomonas fluorescens isolated from rhizosphere. Internet J Microbiol 7(2)

    Google Scholar 

  • Graeme-Cook KA, Faull JL (1991) Effect of ultraviolet-induced mutants of Trichoderma harzianum with altered production on selected pathogens in vivo. Can J Microbiol 37:659–664

    Article  CAS  PubMed  Google Scholar 

  • Gravel V, Martinzi C, Antoun H (2005) Antagonist microorganisms with the ability to control Pythium damping-off of tomato seeds in rockwool. BioControl 50:771–786

    Article  Google Scholar 

  • Green H, Heiberg N, Lejbolle K, Jensen DF (2001) The use of a GUS transformant of Trichoderma harzianum, strain T3a, to study metabolic activity in the spermosphere and rhizosphere related to biocontrol of Pythium damping-off and root rot. Eur J Plant Pathol 107:349–359

    Article  Google Scholar 

  • Grosch R, Faltin F, Lottmann J, Kofoet A, Berg G (2005) Effectiveness of three antagonistic bacterial isolates to suppress Rhizoctonia solani Kühn on lettuce and potato. Can J Microbiol 51:345–353

    Article  CAS  PubMed  Google Scholar 

  • Haas D, Défago G (2005) Biological control of soil-borne pathogens by fluorescent pseudomonads. Nat Rev Microbiol 3:307–319

    Article  CAS  PubMed  Google Scholar 

  • Harman GE, Chet I, Baker R (1980) Trichoderma hamatum on seedling disease induced in radish and pea by Pythium spp. or Rhizoctonia solani. Phytopathology 70:1107–1172

    Article  Google Scholar 

  • Harman GE, Howell CR, Vitarbo A, Chet I, Lorito M (2004) Trichoderma species - opportunistic, avirulent plant symbionts. Nat Rev Microbiol 2:43–56

    Article  CAS  PubMed  Google Scholar 

  • Harris AR, Schisler DA, Ryder MH (1993) Binucleate Rhizoctonia isolates control damping-off caused by Pythium ultimum var. Sporangiiferum, and promote growth, in Capsicum and Celosia seedlings in pasteurized potting medium. Soil Biol Biochem 25(7):909–914

    Article  Google Scholar 

  • Hasan S, Gupta G, Anand S, Chaturvedi A, Kaur H (2013) Biopotential of microbial antagonists against soilborne fungal plant pathogens. Int J Agric Food Sci Technol 4(2):37–39

    Google Scholar 

  • Heydari A, Misaghi IJ (2003) The role of rhizosphere bacteria in herbicide-mediated increase in Rhizoctonia solani-induced cotton seedling damping-off. Plant Soil 257:391–396

    Article  CAS  Google Scholar 

  • Heydari A, Fattahi H, Zamanizadeh HR, Zadeh NH, Naraghi L (2004) Investigation on the possibility of using bacterial antagonists for biological control of cotton seedling damping-off in greenhouse. Appl Entomol Phytopathol 72:51–68

    Google Scholar 

  • Hoitink HAJ, Boehm MJ (1999) Biocontrol within the context of soil microbial communities: a substrate-dependent phenomenon. Annu Rev Phytopathol 37:427–446

    Article  CAS  PubMed  Google Scholar 

  • Howell CR (2002) Cotton seedling pre-emergence damping-off incited by Rhizopus oryzae and Pythium spp. and its biological control with Trichoderma spp.. Biol Control 92(2):177–180

    CAS  Google Scholar 

  • Howell CR (2003) Mechanisms employed by Trichoderma species in the biological control of plant diseases: the history and evolution of current concepts. Plant Dis 87(1):4–10

    Article  Google Scholar 

  • Howell CR, Beier RC, Stipanovic RD (1988) Production of ammonia by Enterobacter cloacae and its possible role in the biological control of Pythium pre-emergence damping-off by the bacterium. Phytopathology 78:1075–1078

    Article  CAS  Google Scholar 

  • Howell CR, Hanson LE, Stipanovic RD, Puckhaber LS (2000) Induction of terpenoid synthesis in cotton roots and control of Rhizoctonia solani by seed treatment with Trichoderma virens. Phytopathology 90:248–252

    Article  CAS  PubMed  Google Scholar 

  • Iavicoli A, Boutet E, Buchala A, Métraux JP (2003) Induced systemic resistance in Arabidopsis thaliana in response to root inoculation with Pseudomonas fluorescens CHA0. Mol Plant Microbe Interact 16:851–858

    Article  CAS  PubMed  Google Scholar 

  • Intana W, Chamswarng C (2007) Control of Chinese-kale damping-off caused by P. aphanidermatum by antifungal metabolites of Trichoderma virens. Songklanakarin J Sci Technol 29(4):919–927

    Google Scholar 

  • Islam MT, Hashidoko Y, Deora A, Ito T, Tahara S (2005) Suppression of damping-off-disease in host plants by the rhizoplane bacterium Lysobacter sp. strain SB-K88 is linked to plant colonization and antibiosis against soil-borne peronosporomycetes. Appl Environ Microbiol 71:3786–3796

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jayaraj J, Radhakrishnan NV, Velazhahan R (2006) Development of formulations of Trichoderma harzianum strain M1 for control of damping-off of tomato caused by Pythium aphanidermatum. Arch Phytopathol Plant Prot 39:1–8

    Article  Google Scholar 

  • Jones JD, Dangl JL (2006) The plant immune system. Nature 14:323–329

    Article  CAS  Google Scholar 

  • Kageyama K, Nelson EB (2003) Differential inactivation of seed exudate stimulation of Pythium ultimum sporangium germination by Enterobacter cloacae influences biological control efficacy on different plant species. Appl Environ Microbiol 69:1114–1120

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kanjanamaneesathian M, Phetcharat V, Pengnoo A, Upawan S (2003) Use of Trichoderma harzianum cultured on ground mesocarp fibre of oil-palm as seed treatment to control Pythium aphanidermatum, a causal agent of damping-off of Chinese kale seedling. World J Microbiol Biotechnol 19:825–829

    Article  CAS  Google Scholar 

  • Khare A, Upadhyay RS (2009) Induction of mutant strains of Trichoderma viride 1433 for biocontrol of Pythium aphanidermatum. Environ Biol Conserv 14:21–27

    Google Scholar 

  • Khare A, Singh BK, Upadhyay RS (2010) Biological control of Pythium aphanidermatum causing damping-off of mustard by mutants of Trichoderma viride1433. J Agric Technol 6(2):231–243

    Google Scholar 

  • Kilany M, Amry SA, Hashem M (2015) Evaluation of the role of soil-isolated bacteria in the production of antifungal metabolites against Arabian journal of science and engineering. Microbiol (in press)

    Google Scholar 

  • Kowalchuk GA, van Os GJ, Aartrijk J, Veen JA (2003) Microbial community responses to disease management soil treatments used in flower bulb cultivation. Biol Fertil Soils 37(1):55–63

    Google Scholar 

  • Landis TD, Tinus RW, McDonald SE, Barnett JP (1990) The container tree nursery manual. The biological component: nursery pests and mycorrhizae, vol 5, Agriculture handbook 674. USDA Forest Service, Washington, DC, p 171

    Google Scholar 

  • Larkin RP, English JT, Mihail JD (1995) Effects of infection by Pythium spp on the root system morphology of alfalfa seedlings. Phytopathology 85:430–435

    Article  Google Scholar 

  • Leclere V, Beche M, Adam A, Guez JS, Wathelet B, Ongena M, Thonart P, Gancel F, Chollet-Imbert M, Jacques P (2005) Mycosubtilin overproduction by Bacillus subtilis BBG100 enhances the organism’s antagonistic and biocontrol activities. Appl Environ Microbiol 71:4577–4584

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lewis A, Papavizas GC (1984) A new approach to stimulate population proliferation of Trichoderma species and other potential biocontrol fungi introduced into natural soils. Phytopathology 74:1240–1244

    Article  Google Scholar 

  • Li Z, Pinson SRM, Marchetti MA, Stansel JW, Park WD (1995) Characterization of quantitative trait loci (QTLs) in cultivated rice contributing to field resistance to sheath blight (Rhizoctonia solani). Theor Appl Genet 91:382–388

    CAS  PubMed  Google Scholar 

  • Li B, Ravnskov S, Xie G, Larsen J (2007) Biocontrol of Pythium damping-off in cucumber by arbuscular mycorrhiza-associated bacteria from the genus Paenibacillus. Biocontrol 52:863–875

    Article  Google Scholar 

  • Lo CT (1998) General mechanisms of action of microbial biocontrol agents. Plant Pathol Bull 7:155–166

    CAS  Google Scholar 

  • Loliam B, Morinaga T, Chaiyanan S (2013) Biocontrol of Pythium aphanidermatum by the cellulolytic actinomycetes Streptomyces rubrolavendulae S4. Sci Asia 39:584–590

    Article  Google Scholar 

  • Lumsden RD, Locke JC (1989) Biological control of damping-off caused by Pythium ultimum and Rhizoctonia solani with Gliocladium virens in soilless mix. Am Phytopathol Soc 79(3):361–366

    Article  Google Scholar 

  • Manici LM, Caputo F, Bambini V (2004) Effect of green manure on Pythium spp. population and microbial communities in intensive cropping systems. Plant Soil 263:133–142

    Article  CAS  Google Scholar 

  • Manjunath M, Prasanna R, Nain L, Dureja P, Singh R, Kumar A et al (2010) Biocontrol potential of cyanobacterial metabolites against damping-off disease caused by Pythium aphanidermatum in solanaceous vegetables. Arch Phytopathol Plant Prot 43:666–677

    Article  Google Scholar 

  • Manoranjitham SK, Prakasam V, Rajappan K, Amutha G (2000) Control of chilli damping-off using bioagents. J Mycol Plant Pathol 30:225–228

    Google Scholar 

  • Marshall KC (1980) Bacterial adhesion in natural environments. In: Berckey RCW (ed) Microbial adhesion to surface. Ellisttorwood, Chichester, Great Britain, pp 187–196

    Google Scholar 

  • Martin FN, Hancock JG (1987) The use of Pythium oligandrum for biological control of pre-emergence damping-off caused by P. ultimum. Phytopathology 77:1013–1020

    Article  Google Scholar 

  • Mazzola M (2007) Manipulation of Rhizosphere bacterial communities to induce suppressive soils. J Nematol 39(3):213–220

    PubMed Central  PubMed  Google Scholar 

  • McKellar ME, Nelson EB (2003) Compost-induced suppression of Pythium damping-off is mediated by fatty acid-metabolizing seed-colonizing microbial communities. Appl Environ Microbiol 69:452–460

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Messiha NAS, Van Diepeningen AD, Farag NS, Abdallah SA, Janse JD, Van Bruggen AHC (2007) Stenotrophomonas maltophilia: a new potential biocontrol agent of Ralstonia solanacearum, causal agent of potato brown rot. Eur J Plant Pathol 118:211–225

    Article  Google Scholar 

  • Muthukumar A, Eswaran A, Sanjeevkumas K (2011) Exploitation of Trichoderma species on the growth of Pythium aphanidermatum in chilli. Braz J Microbiol 42:1598–1607

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nakkeeran S, Kavitha K, Chandrasekar G, Renukadevi P, Fernando WGD (2006) Induction of plant defence compounds by Pseudomonas chlororaphis PA23 and Bacillus subtilis BSCBE4 in controlling damping-off of hot pepper caused by Pythium aphanidermatum. Biocontrol Sci Technol 16(4):403–416

    Article  Google Scholar 

  • Neelamegam R (2004) Evaluation of fungal antagonists to control damping-off of tomato (Lycopersicon esculentum Mill.) caused by Pythium ultimum. J Biol Control 18:97–102

    Google Scholar 

  • Nelson EB (1987) Rapid germination of sporangia of Pythium species in response to volatiles from germination seeds. Phytopathology 77:1108–1112

    Article  Google Scholar 

  • Nelson EB, Chao WL, Norton GT, Harman GE (1986) Attachment of Enterobacter cloacae to hyphae of Pythium ultimum: possible role in the biological control of Pythium pre-emergence damping-off. Phytopathology 76:327–335

    Article  Google Scholar 

  • Pal KK, Gardener BM (2006) Biological control of plant pathogens. Plant Health Instructor. doi:10.1094/PHI-A-2006-1117-02

    Google Scholar 

  • Palumbo JD, Yuen GY, Jochum CC, Tatum K, Kobayashi DY (2005) Mutagenesis of beta- 1, 3-glucanase genes in Lysobacter enzymogenes strain C3 results in reduced biological control activity toward Bipolaris leaf spot of tall fescue and Pythium damping-off of sugar beet. Phytopathology 95:701–707

    Article  CAS  PubMed  Google Scholar 

  • Paulitz TC (1991) Effect of Pseudomonas putida on the stimulation of Pythium ultimum by seed volatiles of pea and soybean. Phytopathology 81:1282–1287

    Article  CAS  Google Scholar 

  • Paulitz TC, Matta A (1999) The role of the host in biological control of diseases. In: Albajes R, Gullino ML, van Lenteren JC, Elad Y (eds) Integrated pest and disease management in greenhouse crops. Kluwer, Wageningen, pp 394–410

    Chapter  Google Scholar 

  • Paulitz TC, Ahmad JS, Baker R (1990) Integration of Pythium nunn and Trichoderma harzianum isolate T-95 for the biological control of Pythium damping-off of cucumber. Plant Soil 121:243–250

    Article  Google Scholar 

  • Postma J, Geraats BPJ, Pastoor R, van Elsas JD (2005) Characterization of the microbial community involved in the suppression of Pythium aphanidermatum in cucumber grown on rockwool. Phytopathology 95:808–818

    Article  CAS  PubMed  Google Scholar 

  • Ramamoorthy V, Raguchander T, Samiyappan R (2002) Enhancing resistance of tomato and hot pepper to Pythium diseases by seed treatment with fluorescent pseudomonads. Eur J Plant Pathol 108:429–441

    Article  CAS  Google Scholar 

  • Rey T, Schornack S (2013) Interactions of beneficial and detrimental root-colonizing filamentous microbes with plant hosts. Genome Biol 14(6):121

    PubMed Central  PubMed  Google Scholar 

  • Salman M, Abuamsha R (2012) Potential for integrated biological and chemical control of damping-off disease caused by Pythium ultimum in tomato. BioControl 57:711–718

    Article  CAS  Google Scholar 

  • Schirmböck M, Lorito M, Wang Y-L et al (1994) Parallel formation and synergism of hydrolytic enzymes and peptaibol antibiotics, molecular mechanisms involved in the antagonistic action of Trichoderma harzianum against phytopathogenic fungi. Appl Environ Microbiol 60:4364–4370

    PubMed Central  PubMed  Google Scholar 

  • Schisler DA, Slininger PJ, Behle RW, Jackson MA (2004) Formulation of Bacillus spp. for biological control of plant diseases. Phytopathology 94:1267–1271

    Article  CAS  PubMed  Google Scholar 

  • Shahraki M, Heydari A, Hassanzadeh N (2009) Investigation of antibiotic, siderophore and volatile metabolites production by Bacillus and Pseudomonas bacteria. Iran J Biol 22:71–85

    Google Scholar 

  • Singh R, Sachan NS (2013) Review on biological control of soil borne fungi in vegetable crops. Hort Flora Res Spectr 2(1):72–76

    Google Scholar 

  • Stanghellini ME, Miller RM (1997) Biosurfactants. Their identity and potential efficacy in the biological control of zoosporic plant pathogens. Plant Dis 81:4–12

    Article  CAS  Google Scholar 

  • Steinberg C, Edel-Hermann V, Alabouvette C, Lemanceau P (2007) Soil suppressiveness to plant diseases. In: van Elsas JD, Jansson J, Trevors JT (eds) Modern soil microbiology. CRC, New York, pp 455–478

    Google Scholar 

  • Sumner DR, Gascho GJ, Johnson AW, Hook JE, Threadgill ED (1990) Root diseases, populations of soil fungi, and yield decline in continuous double-crop corn. Plant Dis 74:704–710

    Article  Google Scholar 

  • Termorshuizen AJ, Jeger MJ (2008) Strategies of soilborne plant pathogenic fungi in relation to disease suppression. Fungal Ecol 1:108–114

    Article  Google Scholar 

  • Thrane C, Nielsen TH, Nielsen MN, Sørensen J, Olsson S (2000) Viscosinamide-producing Pseudomonas fluorescens DR54 exerts a biocontrol effect on Pythium ultimum in sugar beet rhizosphere. Microbiol Ecol 33(2):139–146

    Article  CAS  Google Scholar 

  • van Dijk K, Nelson EB (1997) Inactivation of seed general mechanisms of action of microbial bio-control agents 1 6 5 exudate stimulants of Pythium ultimum sporangium germination by strains of Enterobacter cloacae and other seed-associated bacteria. Appl Environ Microbiol 63:331–335

    Google Scholar 

  • van Dijk K, Nelson EB (2000) Fatty acid competition as a mechanism by which Enterobacter cloacae suppresses Pythium ultimum sporangium germination and damping-off. Appl Environ Microbiol 66:5340–5347

    Article  PubMed Central  PubMed  Google Scholar 

  • van Rijin E (2007) Disease suppression and phytosanitary aspects of compost. PhD thesis. Wageningen University, Wageningen, The Netherlands

    Google Scholar 

  • Vinalea F, Sivasithamparamb K, Ghisalbertic EL, Marraa R, Wooa DL, Loritoa M (2008) Trichoderma–plant–pathogen interactions. Soil Biol Biochem 40:1–10

    Article  CAS  Google Scholar 

  • Weller DM, Raaijmakers JM, Gardener BB, Thomashow LS (2002) Microbial populations responsible for specific soil suppressiveness to plant pathogens. Annu Rev Phytopathol 40:309–348

    Article  CAS  PubMed  Google Scholar 

  • Whipps JM (1997) Developments in the biological control of soil-borne plant pathogens. Adv Botan Res 26:1–134

    Article  Google Scholar 

  • Whipps JM (2001) Microbial interactions and biocontrol in the rhizosphere. J Exp Bot 52:487–511

    Article  CAS  PubMed  Google Scholar 

  • Wilhite SE, Lumsden RD, Straney DC (1994) Mutational analysis of gliotoxin production by the biocontrol fungus Gliocladium virens in relation to suppression of pythium damping-off. Phytopathology 84:816–821

    Article  CAS  Google Scholar 

  • Windstam S, Nelson EB (2008) Differential interference with Pythium ultimum sporangial activation and germination by Enterobacter cloacae in the corn and cucumber spermospheres. Appl Environ Microbiol 74(14):4285–4291

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yang XB (2001) Identification of soybean seedling diseases. Integr Crop Manag 486(10):79–80

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mona Kilany .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kilany, M., Ibrahim, E.H., Al Amry, S., Al Roman, S., Siddiqi, S. (2015). Microbial Suppressiveness of Pythium Damping-Off Diseases. In: Meghvansi, M., Varma, A. (eds) Organic Amendments and Soil Suppressiveness in Plant Disease Management. Soil Biology, vol 46. Springer, Cham. https://doi.org/10.1007/978-3-319-23075-7_9

Download citation

Publish with us

Policies and ethics