Skip to main content

Combining Biocontrol Agents and Organics Amendments to Manage Soil-Borne Phytopathogens

  • Chapter
Organic Amendments and Soil Suppressiveness in Plant Disease Management

Part of the book series: Soil Biology ((SOILBIOL,volume 46))

Abstract

This chapter aims to provide an overview of recent efforts devoted to the management of soil-borne pathogens by means of combining organic amendments and biological control agents. This approach constitutes a promising disease control strategy yet insufficiently explored. We first present definitions of fundamental concepts that the reader will find interacting within this control strategy. Then, we offer a summary of some research studies exemplifying this topic, underlying the potential of this approach to manage selected relevant soil-borne diseases. We also present reasons leading researchers, producers, and consumers to focus their attention on environmentally friendly disease management frameworks, as well as strategies for their successful implementation and derived benefits. Finally, we briefly discuss the feasibility of applying combinations of organic amendments and biological control agents to control soil-borne diseases in woody plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abeysinghe S (2009) Use of nonpathogenic Fusarium oxysporum and rhizobacteria for suppression of Fusarium root and stem rot of Cucumis sativus caused by Fusarium oxysporum f. sp. radicis-cucumerinum. Arch Phytopathol Plant Prot 42:73–82

    Article  CAS  Google Scholar 

  • Abo-Elyousr KAM, Hashem M, Ali EH (2009) Integrated control of cotton root rot disease by mixing fungal biocontrol agents and resistance inducers. Crop Prot 28:295–301

    Article  CAS  Google Scholar 

  • Agrios G (2005) Plant pathology, 5th edn. Elsevier, New York

    Google Scholar 

  • Alabouvette C, Steinberg C (2006) The soil as a reservoir for antagonists to plant diseases. In: Eilenberg J, Hokkanen HMT (eds) An ecological and societal approach to biological control. Springer, Dordrecht, pp 123–144

    Chapter  Google Scholar 

  • Alfano G, Lustrato G, Lima G, Vitullo D, Ranalli G (2011) Characterization of composted olive mill wastes to predict potential plant disease suppressiveness. Biol Control 59:199–207

    Article  Google Scholar 

  • Antonopoulos DF, Tjamos SE, Antoniou PP, Rafeletos P, Tjamos EC (2008) Effect of Paenibacillus alvei, strain K165, on the germination of Verticillium dahliae microsclerotia in planta. Biol Control 46:166–170

    Article  Google Scholar 

  • Atkinson CJ, Fitzgerald JD, Hipps NA (2010) Potential mechanisms for achieving agricultural benefits from biochar application to temperate soils: a review. Plant Soil 337:1–18

    Article  CAS  Google Scholar 

  • Avila Miranda ME, Herrera Estrella A, Peña Cabriales JJ (2006) Colonization of the rhizosphere, rhizoplane and endorhiza of garlic (Allium sativum L.) by strains of Trichoderma harzianum and their capacity to control allium white-rot under field conditions. Soil Biol Biochem 38:1823–1830

    Article  CAS  Google Scholar 

  • Bailey KL, Lazarovits G (2003) Suppressing soil-borne diseases with residue management and organic amendments. Soil Tillage Res 72:169–180

    Article  Google Scholar 

  • Bashan Y, de-Bashan LE, Prabhu SR, Hernandez JP (2014) Advances in plant growth-promoting bacterial inoculant technology: formulations and practical perspectives (1998–2013). Plant Soil 378:1–33

    Article  CAS  Google Scholar 

  • Bhadauria BP, Singh Y, Puri S, Singh PK (2012) Ecofriendly management of Fusarium wilt of Brinjal. Ecol Environ Conserv 18:1049–1052

    Google Scholar 

  • Blaya J, López-Mondéjar R, Lloret E, Pascual JA, Ros M (2013) Changes induced by Trichoderma harzianum in suppressive compost controlling Fusarium wilt. Pestic Biochem Physiol 107:112–119

    Article  CAS  PubMed  Google Scholar 

  • Borrego-Benjumea A, Basallote-Ureba MJ, Abbasi PA, Lazarovits G, Melero-Vara JM (2014) Effects of incubation temperature on the organic amendment-mediated control of Fusarium wilt of tomato. Ann Appl Biol 164:453–463

    Article  CAS  Google Scholar 

  • Boukaew S, Klinmanee C, Prasertsan P (2013) Potential for the integration of biological and chemical control of sheath blight disease caused by Rhizoctonia solani on rice. Worl J Microbiol Biotechnol 29:1885–1893

    Article  CAS  Google Scholar 

  • Boulter JI, Trevors JT, Boland GJ (2002) Microbial studies of compost: bacterial identification, and their potential for turfgrass pathogen suppression. World J Microbiol Biotechnol 18:661–671

    Article  CAS  Google Scholar 

  • Brent K, Hollomon DW (2007) Fungicide resistance in crop pathogens: how can it be managed? Fungicide Resistance Action Committee Monograph No. 1. Croplife International, Belgium

    Google Scholar 

  • Cao Y, Zhang Z, Ling N, Yuan Y, Zheng X, Shen B, Shen Q (2011) Bacillus subtilis SQR 9 can control Fusarium wilt in cucumber by colonizing plant roots. Biol Fertil Soils 47:495–506

    Article  CAS  Google Scholar 

  • Codex Alimentarius (2013) Pesticide residues in food and feed FAO and WHO http://www.codexalimentarius.net. Accessed 25 Feb 2014

  • Compant S, Brader G, Muzammil S, Sessitsch A, Lebrihi A, Mathieu F (2013) Use of beneficial bacteria and their secondary metabolites to control grapevine pathogen diseases. BioControl 58:435–455

    Article  Google Scholar 

  • Cook RJ (1988) Biological control and holistic plant-health care in agriculture. Am J Alternative Agric 3:51–62

    Article  Google Scholar 

  • Cook RJ, Baker KF (1983) Developmental history of biological control of plant pathogens. In: Cook RJ, Baker KF (eds) The nature and practice of biological control of plant pathogens. The American Phytopathological Society, St. Paul, MN, pp 30–56

    Google Scholar 

  • Daniel R (2005) The metagenomics of soil. Nat Rev Microbiol 3:470–478

    Article  CAS  PubMed  Google Scholar 

  • Davis JG, Whiting D (2014) Choosing a soil amendment. In: Gardening series/basics. Colorado State University Extension, Fact sheet No. 7235. http://www.ext.colostate.edu/pubs/garden/07235.html. Accessed 20 Feb 2014

  • De Ceuster TJJ, Hoitink AJ (1999) Prospects for composts and biocontrol agents as substitutes for methyl bromide in biological control of plant diseases. Compost Sci Util 7:6–15

    Article  Google Scholar 

  • Decaëns T (2010) Macroecological patterns in soil communities. Glob Ecol Biogeogr 19:287–302

    Article  Google Scholar 

  • Deepak (2011) Soil amendments, plant extracts and plant products for integrated disease management in agricultural crops: a review. Afr J Agric Res 6:6790–6797

    Google Scholar 

  • Ding C, Shen Q, Zhang R, Chen W (2013) Evaluation of rhizosphere bacteria and derived bio-organic fertilizers as potential biocontrol agents against bacterial wilt (Ralstonia solanacearum) of potato. Plant Soil 366:453–466

    Article  CAS  Google Scholar 

  • Doan TT, Bouvierc C, Bettarelc Y, Bouvier T, Henry-des-Tureaux T, Janeau JL, Lamballe P, Van Nguyen B, Jouquet P (2014) Influence of buffalo manure, compost, vermicompost and biochar amendments on bacterial and viral communities in soil and adjacent aquatic systems. Appl Soil Ecol 73:78–86

    Article  Google Scholar 

  • Domínguez P, Miranda L, Soria C, de los Santos B, Chamorro M, Romero F, Daugovish O, López-Aranda JM, Medina JJ (2014) Soil biosolarization for sustainable strawberry production. Agron Sustain Dev 34:821–829

    Article  Google Scholar 

  • El-Hassan SA, Gowen SR (2006) Formulation and delivery of the bacterial antagonist Bacillus subtilis for management of lentil vascular wilt caused by Fusarium oxysporum f. sp. lentis. J Phytopathol 154:148–155

    Article  Google Scholar 

  • Fiers M, Edel-Hermann V, Chatot C, Le Hingrat Y, Alabouvette C, Steinberg C (2012) Potato soil-borne diseases. A review. Agron Sustain Dev 32:93–132

    Article  Google Scholar 

  • Food and Agriculture Organization of the United Nations (2010a) Database on commercially available organic fertilizers and water-retaining products. http://www.fao.org/ag/agp/orgfert/intro.htm. Accesses 29 Jan 2014

  • Food and Agriculture Organization of the United Nations (2010b) Global forest resources assessment 2010: global tables. http://foris.fao.org/static/data/fra2010/FRA2010GlobaltablesEnJune29.xls. Accesses 14 Oct 2014

  • Fungicide Resistance Action Committee (2013) List of plant pathogenic organisms resistant to disease control agents. www.frac.info. Accessed 29 Jan 2014

  • García-Jiménez J, Monte E, Trapero A (2010) Los hongos y oomicetos fitopatógenos. In: Jiménez Díaz R, Montesinos Segui E (eds) Enfermedades de las plantas causadas por hongos y oomicetos. Naturaleza y control integrado, Phytoma, pp 23–50

    Google Scholar 

  • Ghorbani R, Wilcockson S, Koocheki A, Leifert C (2008) Soil management for sustainable crop disease control: a review. Environ Chem Lett 6:149–162

    Article  CAS  Google Scholar 

  • Giotis C, Markelou E, Theodoropoulou A, Toufexi E, Hodson R, Shotton P, Shiel R, Cooper J, Leifert C (2009) Effect of soil amendments and biological control agents (BCAs) on soil-borne root diseases caused by Pyrenochaeta lycopersici and Verticillium albo-atrum in organic greenhouse tomato production systems. Eur J Plant Pathol 123:387–400

    Article  Google Scholar 

  • Goicoechea N (2009) To what extent are soil amendments useful to control Verticillium wilt? Pest Manag Sci 65:831–839

    Article  CAS  PubMed  Google Scholar 

  • Gu Y, Zhang X, Tu S, Lindström K (2009) Soil microbial biomass, crop yields, and bacterial community structure as affected by long-term fertilizer treatments under wheat-rice cropping. Eur J Soil Biol 45:239–246

    Article  CAS  Google Scholar 

  • Haggag WM, Saber MSM (2000) Evaluation of three compost as multi-strain carriers for biofertilizer and biocontrol agents against Fusarium wilt disease of some legume plants. Arab J Biotechnol 3:133–144

    Google Scholar 

  • Hamblin A (1995) The concept of agricultural sustainability. In: Andrews JH, Tommerup I (eds) Advances in plant pathology, vol 11. Academy, New York, pp 1–19

    Google Scholar 

  • Hannan MA, Hasan MM, Hossain I, Rahman SME, Ismail AM, Oh DH (2012) Integrated management of foot rot of lentil using biocontrol agents under field condition. J Microbiol Biotechnol 22:883–888

    Article  CAS  PubMed  Google Scholar 

  • Hayat R, Ali S, Amara U, Khalid R, Ahmed I (2010) Soil beneficial bacteria and their role in plant growth promotion: a review. Ann Microbiol 60:579–598

    Article  Google Scholar 

  • Hirooka T, Ishii H (2013) Chemical control of plant diseases. J Gen Plant Pathol 79:390–401

    Article  CAS  Google Scholar 

  • Huang X, Zhang N, Yong X, Yang X, Shen Q (2012) Biocontrol of Rhizoctonia solani damping-off disease in cucumber with Bacillus pumilus SQR-N43. Microbiol Res 167:135–143

    Article  CAS  PubMed  Google Scholar 

  • Ismail Y, McCormick S, Hijri M (2013) The arbuscular mycorrhizal fungus, Glomus irregulare, controls the mycotoxin production of Fusarium sambucinum in the pathogenesis of potato. FEMS Microbiol Lett 348:46–51

    Article  CAS  PubMed  Google Scholar 

  • Israel S, Mawar R, Lodha S (2005) Soil solarisation, amendments and bio-control agents for the control of Macrophomina phaseolina and Fusarium oxysporum f. sp. cumini in aridisols. Ann Appl Biol 146:481–491

    Article  Google Scholar 

  • Jacobsen CS, Hjelmsø MH (2014) Agricultural soils, pesticides and microbial diversity. Curr Opin Biotechnol 27:15–20

    Article  CAS  PubMed  Google Scholar 

  • Jaiswal AK, Elad Y, Graber ER, Frenkel O (2014) Rhizoctonia solani suppression and plant growth promotion in cucumber as affected by biochar pyrolysis temperature, feedstock and concentration. Soil Biol Biochem 69:110–118

    Article  CAS  Google Scholar 

  • Jayaraj J, Parthasarathi P, Adhakrishnan NV (2007) Characterization of a Pseudomonas fluorescens strain from tomato rhizosphere and its use for integrated management of tomato damping-off. BioControl 52:683–702

    Article  Google Scholar 

  • Joshi D, Hooda KS, Bhatt JC (2009) Integration of soil solarization with bio-fumigation and Trichoderma spp. for management of damping-off in tomato (Lycopersicon esculentum) in the mid altitude region of north-western Himalayas. Indian J Agric Sci 79:754–757

    Google Scholar 

  • Jung T, Colquhoun IJ, Hardy GESJ (2013) New insights into the survival strategy of the invasive soilborne pathogen Phytophthora cinnamomi in different natural ecosystems in Western Australia. For Pathol 43:266–288

    Article  Google Scholar 

  • Kaewchai S, Soytong K, Hyde KD (2009) Mycofungicides and fungal biofertilizers. Fungal Divers 38:25–50

    Google Scholar 

  • Kavroulakis N, Ntougias S, Besi MI, Katsou P, Damaskinou A, Ehaliotis C, Zervakis GI, Papadopoulou KK (2010) Antagonistic bacteria of composted agro-industrial residues exhibit antibiosis against soil-borne fungal plant pathogens and protection of tomato plants from Fusarium oxysporum f. sp. radicis-lycopersici. Plant Soil 333:233–247

    Article  CAS  Google Scholar 

  • Kawaguchi A, Inoue K (2012) New antagonistic strains of non-pathogenic Agrobacterium vitis to control grapevine crown gall. J Phytopathol 160:509–518

    Article  Google Scholar 

  • Kim IY, Pusey PL, Zhao Y, Korban SS, Choi H, Kim KK (2012) Controlled release of Pantoea agglomerans E325 for biocontrol of fire blight disease of apple. J Control Release 161:109–115

    Article  CAS  PubMed  Google Scholar 

  • Lang J, Hu J, Ran W, Xu Y, Shen Q (2012) Control of cotton Verticillium wilt and fungal diversity of rhizosphere soils by bio-organic fertilizer. Biol Fertil Soils 48:191–203

    Article  Google Scholar 

  • Larkin RP (2008) Relative effects of biological amendments and crop rotations on soil microbial communities and soilborne diseases of potato. Soil Biol Biochem 40:1341–1351

    Article  CAS  Google Scholar 

  • Latha P, Anand T, Prakasam V, Jonathan EI, Paramathma M, Samiyappan R (2011) Combining Pseudomonas, Bacillus and Trichoderma strains with organic amendments and micronutrient to enhance suppression of collar and root rot disease in physic nut. Appl Soil Ecol 49:215–223

    Article  Google Scholar 

  • Lelièvre L, Groh M, Angebault C, Maherault AC, Didier E, Bougnoux ME (2013) Azole resistant Aspergillus fumigatus: an emerging problem. Med Mal Infect 43:139–145

    Article  PubMed  Google Scholar 

  • Liu M, Hu F, Chen X, Huang Q, Jiao J, Zhang B, Li H (2009) Organic amendments with reduced chemical fertilizer promote soil microbial development and nutrient availability in a subtropical paddy field: the influence of quantity, type and application time of organic amendments. Appl Soil Ecol 42:166–175

    Article  Google Scholar 

  • Liu Y, Shi J, Feng Y, Yang X, Li X, Shen Q (2013) Tobacco bacterial wilt can be biologically controlled by the application of antagonistic strains in combination with organic fertilizer. Biol Fertil Soils 49:447–464

    Article  Google Scholar 

  • López-Escudero FJ, Blanco-López MA (1999) First report of transmission of Verticillium dahliae by infested manure in olive orchards in Andalucía (Southern Spain). Plant Dis 83:1178

    Article  Google Scholar 

  • López-Escudero FJ, Mercado-Blanco J (2011) Verticillium wilt of olive: a case study to implement an integrated management strategy to control a soil-borne pathogen. Plant Soil 344:1–50

    Article  CAS  Google Scholar 

  • López-Herrera CJ, Perez-Jiménez RM, Basallote-Ureba MJ, Zea Bonilla T, Melero-Vara JM (2003) Effect of soil solarization on the control of Phytophthora root rot in avocado. Plant Pathol 46:329–340

    Article  Google Scholar 

  • Lugtenberg B, Kamilova F (2009) Plant-growth-promoting rhizobacteria. Annu Rev Microbiol 63:541–556

    Article  CAS  PubMed  Google Scholar 

  • Luo J, Ran W, Hu J, Yang X, Xu Y, Shen Q (2010) Application of bio-organic fertilizer significantly affected fungal diversity of soils. Soil Sci Soc Am J 74:2039–2048

    Article  CAS  Google Scholar 

  • Mazzola M (2002) Mechanisms of natural soil suppressiveness to soilborne diseases. Anton Leeuw J Microbiol 81:557–564

    Article  CAS  Google Scholar 

  • Melero-Vara JM, López-Herrera CJ, Prados-Ligero AM, Vela-Delgado MD, Navas-Becerra JA, Basallote-Ureba MJ (2011) Effects of soil amendment with poultry manure on carnation Fusarium wilt in greenhouses in southwest Spain. Crop Prot 30:970–976

    Article  Google Scholar 

  • Mercado-Blanco J, Bakker AHM (2007) Interactions between plants and beneficial Pseudomonas spp.: exploiting bacterial traits for crop protection. Antonie Van Leeuwenhoek 92:367–389

    Article  PubMed  Google Scholar 

  • Mercado-Blanco J, Lugtenberg BJJ (2014) Biotechnological applications of bacterial endophytes. Curr Biotechnol 3:60–75

    Article  CAS  Google Scholar 

  • Milgroom MG, Cortesi P (2004) Biological control of chestnut blight with hypovirulence: a critical analysis. Annu Rev Phytopathol 42:311–338

    Article  CAS  PubMed  Google Scholar 

  • Moreira AC, Domingos AC, Fontes AM, Semedo J, Melo E, Machado H, Reis M, Horta M, Cravador A (2007) Evaluation of cork and holm oak seedling viability to Phytophthora cinnamomi infection treated with compost and mycorrhizae fungi. IOBC/wprs Bull 57:73–76

    Google Scholar 

  • Nakkeeran S, Fernando WGD, Siddiqui ZA (2006) Plant growth promoting rhizobacteria formulations and its scope in commercialization for the management of pests and disease. In: Siddqui ZA (ed) PGPR: biocontrol and biofertilization. Springer, Dordrecht, pp 257–296

    Chapter  Google Scholar 

  • Narayanasami P (2013) Mechanisms of action of fungal biological control agents. In: Nayaranassami P (ed) Biological management of diseases of crops, vol 1, Characteristics of biological control agents. Springer, Dordrecht, pp 99–200

    Chapter  Google Scholar 

  • Neeraj, Singh K (2011) Organic amendments to soil inoculated arbuscular mycorrhizal fungi and Pseudomonas fluorescens treatments reduce the development of root-rot disease and enhance the yield of Phaseolus vulgaris L. Eur J Soil Biol 47:288–295

    Google Scholar 

  • Noble R (2011) Risks and benefits of soil amendment with composts in relation to plant pathogens. Australas Plant Pathol 40:157–167

    Article  Google Scholar 

  • Noble R, Conventry E (2005) Suppression of soil-borne plant diseases with composts: a review. Biocontrol Sci Technol 15:3–20

    Article  Google Scholar 

  • Ongley ED (ed) (1996) Control of water pollution from agriculture – FAO irrigation and drainage paper 55. FAO, Roma

    Google Scholar 

  • Pan W, Mu C, Jiang X, Tian Y, Zhu C (2006) Chlamydospore and conidia of Trichoderma and soil fungistasis. Chin J Biol Control 22:87–91

    Google Scholar 

  • Papasotiriou FG, Varypatakis KG, Christofi N, Tjamos SE, Paplomatas EJ (2013) Olive mill wastes: a source of resistance for plants against Verticillium dahliae and a reservoir of biocontrol agents. Biol Control 67:51–60

    Article  Google Scholar 

  • Pegg GF, Brady BL (2002) Verticillium wilts. CAB International, Wallingford

    Book  Google Scholar 

  • Pliego C, Cazorla FM (2012) Biocontrol of tree root diseases. In: Bruijn FJ (ed) Molecular microbial ecology of the rhizosphere, vol 2. Wiley Blackwell, New Jersey, pp 655–663

    Google Scholar 

  • Pokharel R (2011) Soil solarization, an alternative to soil fumigants. Crop series soils, Colorado State University, Fact Sheet n° 0.505

    Google Scholar 

  • Porras M, Barrau C, Romero F (2007) Effects of soil solarization and Trichoderma on strawberry production. Crop Prot 26:782–787

    Article  Google Scholar 

  • Prashar P, Kapoor N, Sachdeva S (2014) Rhizosphere: its structure, bacterial diversity and significance. Rev Environ Sci Biotechnol 13:63–77

    Article  CAS  Google Scholar 

  • Prieto P, Navarro-Raya C, Valverde-Corredor A, Amyotte SG, Dobinson KF, Mercado-Blanco J (2009) Colonization process of olive tissues by Verticillium dahliae and its in planta interaction with the biocontrol root endophyte Pseudomonas fluorescens PICF7. Microb Biotechnol 2:499–511

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Raaijmakers JM, Paulitz TC, Steinberg C, Alabouvette C, Moënne-Loccoz Y (2009) The rhizosphere: a playground and battlefield for soilborne pathogens and beneficial microorganisms. Plant Soil 321:341–361

    Article  CAS  Google Scholar 

  • Ranganathswamy M, Patibanda AK, Nageshwara Rao G (2013) Evaluation of toxicity of agrochemicals on Trichoderma isolates in vitro. J Mycopathol Res 51:289–293

    Google Scholar 

  • Ren JH, Li H, Wang YF, Ye JR, Yan AQ, Wu XQ (2013) Biocontrol potential of an endophytic Bacillus pumilus JK-SX001 against poplar canker. Biol Control 67:421–430

    Article  Google Scholar 

  • Roberts DP, Lohrke SM, Meyer SLF, Buyer JS, Bowers JH, Baker CJ, Lie W, de Souza JT, Lewis JA, Chung S (2005) Biocontrol agents applied individually and in combination for suppression of soilborne diseases of cucumber. Crop Prot 24:141–155

    Article  Google Scholar 

  • Ruano-Rosa D, López-Herrera CJ (2009) Evaluation of Trichoderma spp. as biocontrol agents against avocado white root rot. Biol Control 51:66–77

    Article  Google Scholar 

  • Ruano-Rosa D, Cazorla FM, Bonilla N, Martín-Pérez R, de Vicente A, López-Herrera CJ (2014) Biological control of avocado white root rot with combined applications of Trichoderma spp. and rhizobacteria. Eur J Plant Pathol 138:751–762

    Article  Google Scholar 

  • Soil Science Glossary Terms Committee (2008) Glossary of soil science terms 2008. American Society of Agronomy, USA

    Google Scholar 

  • Sparks TC (2013) Insecticide discovery: an evaluation and analysis. Pestic Biochem Physiol 107:8–17

    Article  CAS  PubMed  Google Scholar 

  • Suárez-Estrella F, Arcos-Nievas MA, López MJ, Vargas-García MC, Moreno J (2013) Biological control of plant pathogens by microorganisms isolated from agro-industrial composts. Biol Control 67:509–515

    Article  Google Scholar 

  • Tailor JA, Joshi BH (2014) Harnessing plant growth promoting rhizobacteria beyond nature: a review. J Plant Nutr 37:1534–1571

    Article  CAS  Google Scholar 

  • Trabelsi D, Mhamdi R (2013) Microbial inoculants and their impact on soil microbial communities: a review. Biomed Res Int. doi:10.1155/2013/863240

    PubMed Central  PubMed  Google Scholar 

  • Trillas MI, Casanova E, Cotxarrera L, Ordovás J, Borrero C, Avilés M (2006) Composts from agricultural waste and the Trichoderma asperellum strain T-34 suppress Rhizoctonia solani in cucumber seedlings. Biol Control 39:32–38

    Article  Google Scholar 

  • Tupe SG, Chaudhary PM, Deshpande SR, Deshpande MV (2014) Development of novel molecules for the control of plant pathogenic fungi in agriculture. In: Kharwar RN, Upadhyay RS, Dubey NK, Raghuwanshi R (eds) Microbial diversity and biotechnology in food security. Springer, New Delhi, pp 315–325

    Google Scholar 

  • Varma A, Chincholkar S (eds) (2007) Microbial siderophores. Springer, New York

    Google Scholar 

  • Vitullo D, Altieri R, Esposito A, Nigro F, Ferrara M, Alfano G, Ranalli G, De Cicco V, Lima G (2013) Suppressive biomasses and antagonist bacteria for an eco-compatible control of Verticillium dahliae on nursery-grown olive plants. Int J Environ Sci Technol 10:209–220

    Article  CAS  Google Scholar 

  • Wang B, Yuan J, Zhang J, Shen Z, Zhang M, Li R, Ruan Y, Shen Q (2013) Effects of novel bioorganic fertilizer produced by Bacillus amyloliquefaciens W19 on antagonism of Fusarium wilt of banana. Biol Fertil Soils 49:435–446

    Article  Google Scholar 

  • Wei Z, Yang X, Yin S, Shen Q, Ran W, Xu Y (2011) Efficacy of Bacillus-fortified organic fertiliser in controlling bacterial wilt of tomato in the field. Appl Soil Ecol 48:152–159

    Article  Google Scholar 

  • Weiland JE (2014) Pythium species and isolate diversity influence inhibition by the biological control agent Streptomyces lydicus. Plant Dis 98:653–659

    Article  Google Scholar 

  • Woo SL, Ruocco M, Vinale F, Nigro M, Marra R, Lombardi N, Pascale A, Lanzuise S, Manganiello G, Lorito M (2014) Trichoderma-based products and their widespread use in agriculture. Open Mycol J 8:71–126

    Article  Google Scholar 

  • Wu HS, Yang XN, Fan JQ, Miao WG, Ling N, Xu YC, Huang QW, Shen QR (2009) Suppression of Fusarium wilt of watermelon by a bio-organic fertilizer containing combinations of antagonistic microorganisms. Biocontrol 54:287–300

    Article  Google Scholar 

  • Xu XM, Jeffries P, Pautasso M, Jeger MJ (2011) Combined use of biocontrol agents to manage plant diseases in theory and practice. Phytopathology 101:1024–1031

    Article  CAS  PubMed  Google Scholar 

  • Yang X, Chen L, Yong X, Shen Q (2011) Formulations can affect rhizosphere colonization and biocontrol efficiency of Trichoderma harzianum SQR-T037 against Fusarium wilt of cucumbers. Biol Fertil Soils 47:239–248

    Article  Google Scholar 

  • Yao S, Merwin IA, Abawi GS, Thies JE (2006) Soil fumigation and compost amendment alter soil microbial community composition but do not improve tree growth or yield in an apple replant site. Soil Biol Biochem 38:587–599

    Article  CAS  Google Scholar 

  • Yoom MY, Cha B, Kim JC (2013) Recent trends in studies on botanical fungicides in agriculture. Plant Pathol J 29:1–9

    Article  Google Scholar 

  • Zaidi NW, Singh US (2013) Trichoderma in plant health management. In: Mukherjee PK, Horwitz BA, Singh US, Mukherjee M, Schmoll M (eds) Trichoderma: biology and applications. CABI, Boston, MA, pp 230–246

    Chapter  Google Scholar 

  • Zhang QC, Shamsi IH, Xu DT, Wang GH, Lin XY, Jilani G, Hussain N, Chaudhry AN (2012) Chemical fertilizer and organic manure inputs in soil exhibit a vice versa pattern of microbial community structure. Appl Soil Ecol 57:1–8

    Article  Google Scholar 

  • Zhao Q, Dong C, Yang X, Mei X, Ran W, Shen Q, Xu Y (2011) Biocontrol of Fusarium wilt disease for Cucumis melo melon using bio-organic fertilizer. Appl Soil Ecol 47:67–75

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jesús Mercado-Blanco .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ruano-Rosa, D., Mercado-Blanco, J. (2015). Combining Biocontrol Agents and Organics Amendments to Manage Soil-Borne Phytopathogens. In: Meghvansi, M., Varma, A. (eds) Organic Amendments and Soil Suppressiveness in Plant Disease Management. Soil Biology, vol 46. Springer, Cham. https://doi.org/10.1007/978-3-319-23075-7_22

Download citation

Publish with us

Policies and ethics