Skip to main content

Biodisinfestation with Organic Amendments for Soil Fatigue and Soil-Borne Pathogens Control in Protected Pepper Crops

  • Chapter
Organic Amendments and Soil Suppressiveness in Plant Disease Management

Part of the book series: Soil Biology ((SOILBIOL,volume 46))

Abstract

Soil-borne diseases and soil fatigue cause relevant economic losses in greenhouse pepper crops from Spain, not only in the South-eastern Mediterranean region but also in the Northern areas with a humid temperate climate. The main soil phytopathological problems in the South-east are the oomycetes Phytophthora parasitica and P. capsici, the nematode Meloidogyne incognita and the soil fatigue by non-pathogenic Fusarium species proliferation. The main problems in the North are P. capsici, P. cryptogea and Verticillium dahliae. The mechanisms involved in disease suppression by organic amendments and the management strategies for the control of protected pepper crops, soil-borne diseases and soil fatigue are reviewed. Biosolarisation provides an effective and stable strategy for soil-borne pathogens control and the mitigation of soil fatigue. When biosolarisation is repeated, its effectiveness against fatigue and pathogens increases either by providing direct action against fungal microbiota and/or increasing plant health through the improvement of soil chemical and physical characteristics. Increase in macro-micronutrients and water infiltration capacity and decrease in apparent density and compaction are among the improvements in soil characteristics that are related to a crop production increase. Biosolarisation combined with organic amendments improves the soil physical characteristics, specifically in relation to the control of Phytophthora root rot which is more important in compact clay soils than in well-ventilated soils with adequate drainage. In recent years numerous alternatives for chemical disinfections have been studied, and of these, those based on organic amendments alone or in combination with solarisation seem to be the most promising (Guerrero et al. 2013) in intensive protected horticultural crops.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arriaga H, Núñez-Zofío M, Larregla S, Merino P (2011) Gaseous emissions from soil biodisinfestation by animal manure on a greenhouse pepper crop. Crop Prot 30:412–419

    Article  Google Scholar 

  • Bailey KL, Lazarovits G (2003) Suppressing soilborne diseases with residues management and organic amendments. Soil Tillage Res 72:169–180

    Article  Google Scholar 

  • Baysal-Gurel F, Gardener BM, Miller SA (2012) Soilborne disease management in organic vegetable production. Department of Plant Pathology, The Ohio State University, published online 1 Aug 2012. http://www.extension.org/pages/64951/soilborne-disease-management-in-organic-vegetable-production. Verified 17 Feb 2014

  • Bello A, López-Pérez JA, García-Álvarez A, Arcos SC, Ros C, Guerrero MM, Guirao P, Lacasa A (2004) Biofumigación con solarización para el control de nematodos en cultivo de pimiento. In: Lacasa A, Guerrero MM, Oncina M, Mora JA (eds) Desinfección de suelos en invernaderos de pimiento. Publicaciones de la Consejería de Agricultura, Agua y Medio Ambiente, Región de Murcia, pp 105–129

    Google Scholar 

  • Blok WJ, Lamers JG, Termorshuizen AJ, Bollen GJ (2000) Control of soilborne plant pathogens by incorporating fresh organic amendments followed by tarping. Phytopathology 90:253–259

    Article  CAS  PubMed  Google Scholar 

  • Bonanomi G, Antignani V, Pane C, Scala F (2007) Suppression of soilborne fungal diseases with organic amendments. J Plant Pathol 89:311–324

    Google Scholar 

  • Bonanomi G, Antignani V, Capodilupo M, Scala F (2010) Identifying the characteristics of organic soil amendments that suppress soilborne plant diseases. Soil Biol Biochem 42:136–144

    Article  CAS  Google Scholar 

  • Bouhot D (1983) Étude de la fatigue des sols dans les aspergerais et les pépinières d’asperge. In: INRA (ed) La fatigue des sols. Diagnostic de la fertilité dans les systèmes culturaux. INRA, Paris, pp 61–64

    Google Scholar 

  • Butler DM, Rosskopf EN, Kokalis N, Burelle N, Albano JP, Muramoto J, Shennan C (2012a) Exploring warm-season cover crops as carbon sources for anaerobic soil disinfestation (ASD). Plant Soil 335:149–165

    Article  Google Scholar 

  • Butler DM, Kokalis-Burelle N, Muramoto J, Shennan C, McCollum TG, Rosskopf EN (2012b) Impact of anaerobic soil disinfestation combined with soil solarization on plant–parasitic nematodes and introduced inoculum of soilborne plant pathogens in raised-bed vegetable production. Crop Prot 39:33–40

    Article  CAS  Google Scholar 

  • Candido V, Miccolis V, Basile M, D’Addabbo T, Gatta G (2005) Soil solarization for the control of Meloidogyne javanica on eggplant in Southern Italy. Acta Hortic 698:195–199

    Article  Google Scholar 

  • Cohen MF, Yamasaki H, Mazzola M (2005) Brassica napus seed meal soil amendment modifies microbial community structure, nitric oxide production and incidence of Rhizoctonia root rot. Soil Biol Biochem 37:1215–1227

    Article  CAS  Google Scholar 

  • Conn KL, Tenuta M, Lazarovits G (2005) Liquid swine manure can kill Verticillium dahliae microsclerotia in soil by volatile fatty acid, nitrous acid, and ammonia toxicity. Phytopathology 95:28–35

    Article  PubMed  Google Scholar 

  • de la Fuente E, Soria AC, Díez-Rojo MA, Piedra Buena A, García-Álvarez A, Almendros G, Bello A (2009) Solid-phase micro-extraction (SPME) in the early detection of potentially active volatile compounds from organic wastes used for the management of soil-borne pathogens. J Environ Sci Health A 44:1004–1010

    Article  Google Scholar 

  • Erwin DC, Ribeiro OK (1996) Phytophthora diseases worldwide. American Phytopathological Society, St. Paul, MN

    Google Scholar 

  • Etxeberria A, Mendarte S, Larregla S (2011) Thermal inactivation of Phytophthora capsici oospores. Rev Iberoam Micol 28(2):83–90

    Article  PubMed  Google Scholar 

  • Fernández P, Guerrero MM, Martínez MA, Ros C, Lacasa A, Bello A (2005) Effects of biofumigation plus solarization on soil fertility. In: Industrial crops and rural development. Proceedings of annual meeting of the association for the advancement of industrial crops, Murcia, 17–21 Sept 2005, pp 229–236

    Google Scholar 

  • Gamliel A, Stapleton JJ (1993) Characterization of antifungal volatile compounds evolved from solarized soil amended with cabbage residues. Phytopathology 38:899–905

    Article  Google Scholar 

  • Gamliel A, Austerweil M, Kritzman G (2000) Non-chemical approach to soilborne pest management – organic amendments. Crop Prot 19:847–853

    Article  Google Scholar 

  • Gilreath JP, Santos BM (2004) Methyl bromide alternatives for weed and soilborne disease management in tomato (Lycopersicon esculentum). Crop Prot 23:1193–1198

    Article  CAS  Google Scholar 

  • Guerrero MM (2013) Biofumigación y desinfección de suelos de invernadero para cultivos de pimiento y la fatiga del suelo. PhD thesis, ETSIA, Universidad Politécnica de Cartagena, Murcia, 215 pp

    Google Scholar 

  • Guerrero MM, Lacasa A, Ros C, Bello A, Martínez MC, Torres J, Fernández P (2004a) Efecto de la biofumigación con solarización sobre los hongos del suelo y la producción: fechas de desinfección y enmiendas. In: Lacasa A, Guerrero MM, Oncina M, Mora JA (eds) Desinfección de suelos en invernaderos de pimiento. Publicaciones de la Consejería de Agricultura, Agua y Medio Ambiente, Región de Murcia. pp 208–238

    Google Scholar 

  • Guerrero MM, Ros C, Martínez MA, Barceló N, Martínez MC, Guirao P, Bello A, Contreras J, Lacasa A (2004b) Estabilidad en la eficacia desinfectante de la biofumigación con solarización en cultivos de pimiento. Acta Hortic 42:20–24

    Google Scholar 

  • Guerrero MM, Ros C, Martínez MA, Martínez MC, Bello A, Lacasa A (2006) Biofumigation vs biofumigation plus solarization to control Meloidogyne incognita in sweet pepper. IOBC-WPRS Bulletin 29:313–318. In: Castañé C, Sánchez JA (eds) Proceedings of the meeting at Murcia, 14–18 May 2006. ISBN 92-9067-187-2. Working group “Integrated Control in Protected Crops, Mediterranean Climate”. International organisation of biological control of noxious animals and plants – west palaearctic regional section. 379 pp. http://www.iobc-wprs.org/pub/bulletins/index.html

  • Guerrero MM, Ros C, Lacasa C, Martínez V, Lacasa A, Fernández P, Martínez MA, Núñez M, Larregla S, Díez-Rojo MA, Bello A (2010) Effect of biosolarization using pellets of Brassica carinata on soilborne pathogens in protected pepper crops. Acta Hortic 883:337–344

    Article  Google Scholar 

  • Guerrero MM, Lacasa-Martínez CM, Hernández-Piñera A, Martínez-Alarcon V, Lacasa-Plasencia A (2013) Evaluation of repeated biodisinfestation using Brassica carinata pellets to control Meloidogyne incognita in protected pepper crops. Span J Agric Res 11(2):485–493

    Article  Google Scholar 

  • Guerrero MM, Guirao P, Martínez MC, Tello J, Lacasa A (2014) Soil fatigue and its specificity towards pepper plants in greenhouses. Span J Agric Res 12:644–652

    Article  Google Scholar 

  • Hoitink HAJ, Boehm MJ (1999) Biocontrol within the context of soil microbial communities: a substrate-dependent phenomenon. Annu Rev Phytopathol 37:427–446

    Article  CAS  PubMed  Google Scholar 

  • Hoitink HAJ, Stone AG, Han DY (1997) Suppression of plant diseases by composts. HortSci 32:184–187

    Google Scholar 

  • Katan J, Vanacher A (1990) Soil and crop health following soil disinfestation. In: Giraud M, Faure J (eds) Fatigue de sol. Méthode de diagnostic en verger et en fraiseraie. Infos, Paris, pp 21–26

    Google Scholar 

  • Kirchmann H, Witter E (1989) Ammonia volatilization during aerobic and anaerobic manure decomposition. Plant Soil 115:35–41

    Article  CAS  Google Scholar 

  • Kirkegaard JA, Matthiessen JN (2004) Developing and refining the biofumigation concept. Agroindustria 3:233–239

    Google Scholar 

  • Kirkegaard JA, Gardner PA, Desmarchelier JM, Angus JF (1993) Biofumigation: using Brassica species to control pests and diseases in horticulture and agriculture. In: Wratten N, Mailer R (eds) Proceedings of the 9th Australian Research Assembly on Brassicas. NSW Agric, Wagga Wagga, pp 77–82

    Google Scholar 

  • Kroodsma W, Huis in’t Veld JWH, Scholtens R (1993) Ammonia emission and its reduction from cubicle houses by flushing. Livest Prod Sci 35:293–302

    Google Scholar 

  • Lacasa A, Guirao P (1997) Investigaciones actuales sobre alternativas al uso del bromuro de metilo en pimiento en invernaderos del campo de Cartagena. In: López A, Mora JA (eds) Posibilidades de alternativas viables al bromuro de metilo en el pimiento de invernadero. Publicaciones de la Consejería de Agricultura, Agua y Medio Ambiente, Región de Murcia, Jornadas 11, pp 21–36

    Google Scholar 

  • Lacasa CM, Guerrero MM, Ros C, Martínez V, Lacasa A, Fernández P, Martínez MA, Núñez M, Larregla S, Díez-Rojo MA, Bello A (2010) Efficacy of biosolarization with sugar beet vinasses for soil disinfestation in pepper greenhouses. Acta Hortic 883:345–352

    Article  Google Scholar 

  • Larkin RP, Griffin TS (2007) Control of soilborne potato diseases using Brassica green manures. Crop Prot 26:1067–1077

    Article  Google Scholar 

  • Larregla S (2003) Etiología y epidemiología de la “Tristeza” del pimiento en Bizkaia: su control. PhD thesis, Universidad del País Vasco, Bizkaia, 756 pp

    Google Scholar 

  • Lazarovits G (2001) Management of soilborne plant pathogens with organic soil amendments: a disease control strategy salvaged from the past. Can J Plant Pathol 23:1–7

    Article  Google Scholar 

  • Lazzeri L, Manici LM (2000) The glucosinolate-myrosinase system: a natural and practical tool for biofumigation. Acta Hortic 532:89–95

    Article  CAS  Google Scholar 

  • Lazzeri L et al (2010) Use of seed flour as soil pesticide. Patent number US7749549B2

    Google Scholar 

  • Leoni C, Ghini R (2006) Sewage sludge effect on management of Phytophthora nicotianae in citrus. Crop Prot 25:10–22

    Article  CAS  Google Scholar 

  • Litterick AM, Harrier L, Wallace P, Watson CA, Wood M (2004) The role of uncomposted materials, composts, manures, and compost extracts in reducing pest and disease incidence and severity in sustainable temperate agricultural and horticultural crop production – a review. Crit Rev Plant Sci 23:453–479

    Article  Google Scholar 

  • Liu B, Gumpertz ML, Hu S, Ristaino JB (2008) Effect of prior tillage and soil fertility amendments on dispersal of Phytophthora capsici and infection of pepper. Eur J Plant Pathol 120:273–287

    Article  Google Scholar 

  • Lockwood JL (1988) Evolution of concepts associated with soilborne plant pathogens. Annu Rev Phytopathol 26:93–121

    Article  Google Scholar 

  • Mandal A, Patra AK, Singh D, Swarup A, Masto RE (2007) Effect of long-term application of manure and fertilizer on biological and biochemical activities in soil during crop development stages. Bioresour Technol 98:3585–3592

    Article  CAS  PubMed  Google Scholar 

  • Manici LM, Ciavatta C, Kelderer M, Erschbaumer G (2003) Replant problems in South Tyrol: role of fungal pathogens and microbial population in conventional and organic apple orchards. Plant Soil 256:315–324

    Article  CAS  Google Scholar 

  • Martínez MA, Lacasa A, Tello J (2009) Ecología de la microbiota fúngica de los suelos de los invernaderos de pimiento y su interés agronómico. Ministerio de Medio Ambiente, Madrid, 374 pp

    Google Scholar 

  • Martínez MA, Martínez MC, Bielza P, Tello J, Lacasa A (2011a) Effect of biofumigation with manure amendments and repeated biosolarization on Fusarium density in pepper crops. J Ind Microbiol Biotechnol 38:3–11

    Article  PubMed  Google Scholar 

  • Martínez MA, Martínez MC, Torres J, Tello J, Lacasa A (2011b) Long-term effects of the application of organic amendments on soil fungal communities in pepper crops. Bull IOBC/WPRS 71:81–84

    Google Scholar 

  • Matthiessen JN, Kirkegard JA (2006) Biofumigation and enahanced biodegradation: opportunity and challenge in soilborne pest and disease management. Crit Rev Plant Sci 25:235–265

    Article  CAS  Google Scholar 

  • Mazzola M, Manici LM (2012) Apple replant disease: role of microbial ecology in cause and control. Annu Rev Phytopathol 50:45–65

    Article  CAS  PubMed  Google Scholar 

  • Momma N (2008) Biological soil disinfestation (BSD) of soilborne pathogens and its possible mechanisms. Jpn Agric Res Q 42:7–12

    Article  CAS  Google Scholar 

  • Moral R, Paredes C, Bustamante MA, Marhuenda-Egea F, Bernal MP (2009) Utilisation of manure composts by high-value crops: safety and environmental challenges. Bioresour Technol 100:5454–5460

    Article  CAS  PubMed  Google Scholar 

  • Núñez-Zofío M, Garbisu C, Larregla S (2010) Application of organic amendments followed by plastic mulching for the control of Phytophthora root rot of pepper in northern Spain. Acta Hortic 883:353–360

    Article  Google Scholar 

  • Núñez-Zofío M, Larregla S, Garbisu C (2011) Application of organic amendments followed by soil plastic mulching reduces the incidence of Phytophthora capsici in pepper crops under temperate climate. Crop Prot 30:1563–1572

    Article  Google Scholar 

  • Núñez-Zofío M, Larregla S, Garbisu C (2012) Repeated biodisinfection controls the incidence of Phytophthora root and crown rot of pepper while improving soil quality. Span J Agric Res 10(3):794–805

    Article  Google Scholar 

  • Oka Y (2010) Mechanisms of nematode suppression by organic soil amendments: a review. Appl Soil Ecol 44:101–115

    Article  Google Scholar 

  • Oka Y, Shapira N, Fine P (2007) Control of root-knot nematodes in organic farming systems by organic amendments and soil solarization. Crop Prot 26:1556–1565

    Article  Google Scholar 

  • Palmieri S (2005) Biofumigation: a new technology based on the use of sulphur-containing metabolites in Brassica plants. In: Proceedings of annual meeting of the association for the advancement of industrial crops, Murcia, 17–21 Sept 2005, pp 201–213

    Google Scholar 

  • Rietz DN, Haynes RJ (2003) Effects of irrigation-induced salinity and sodicity on soil microbial activity. Soil Biol Biochem 35:845–854

    Article  CAS  Google Scholar 

  • Ristaino JB, Johnston SA (1999) Ecologically based approaches to management of Phytophthora blight on bell pepper. Plant Dis 83:1080–1089

    Article  Google Scholar 

  • Ros M, García C, Hernández MT, Lacasa A, Fernández P, Pascual JA (2008) Effects of biosolarization as methyl bromide alternative for Meloidogyne incognita control on quality of soil under pepper. Biol Fertil Soils 45:37–44

    Article  Google Scholar 

  • Sachi S, Odorizzi S, Lazzeri L, Marciano P (2005) Effect of Brassica carinata seed meal treatment on the Trichoderma harzianum T39-Sclerotinia species interaction. Acta Hortic 698:289–292

    Google Scholar 

  • Scotto La Massesse C (1983) Mesures susceptibles d’apprécier et de limiter les effets de la fatigue des sols dans le cas de reconstitution des vergers. In: INRA (ed) La fatigue des sols. Diagnostic de la fertilité dans les systèmes culturaux. INRA, Paris, pp 99–111

    Google Scholar 

  • Smolinska U, Morra MJ, Kanudsen GR, James R (2003) Isothiocyanate produced by Brassicaceae species as inhibitors of Fusarium oxysporum. Plant Dis 87:407–412

    Article  CAS  Google Scholar 

  • Stapleton JJ (2000) Soil solarization in various agricultural production systems. Crop Prot 19:837–841

    Article  Google Scholar 

  • Stapleton JJ, Bañuelos GS (2009) Biomass crops can be used for biological disinfestation and remediation of soils and water. Calif Agric 63:41–46

    Article  Google Scholar 

  • Stone AG, Scheuerell SJ, Darby HM (2004) Suppression of soilborne diseases in field agricultural systems: organic matter management, cover cropping, and other cultural practices. In: Magdoff F, Weil RR (eds) Soil organic matter in sustainable agriculture. CRC Press LLC, Boca Raton, FL, pp 166–223

    Google Scholar 

  • Tello JC, Lacasa A (1997) Problemática fitosanitaria del suelo en el cultivo del pimiento en el campo de Cartagena. In: López A, Mora JA (eds) Posibilidades de Alternativas Viables al Bromuro de Metilo en el Pimiento de Invernadero. Publicaciones de la Consejería de Agricultura, Agua y Medio Ambiente, Región de Murcia, Jornadas 11, pp 11–17

    Google Scholar 

  • Tenuta M, Lazarovits G (2002) Ammonia and nitrous acid from nitrogenous amendments kill the microsclerotia of Verticillium dahliae. Phytopathology 92:255–264

    Article  CAS  PubMed  Google Scholar 

  • Tenuta M, Conn KL, Lazarovits G (2002) Volatile fatty acids in liquid swine manure can kill microsclerotia of Verticillium dahliae. Phytopathology 92:548–552

    Article  CAS  PubMed  Google Scholar 

  • Vallad GE, Cooperband LR, Goodman RM (2003) Plant foliar disease suppression mediated by composted forms of paper mill residuals exhibits molecular features of induced resistance. Physiol Mol Plant Pathol 63:65–77

    Article  CAS  Google Scholar 

  • Wang Q, Ma Y, Wang G, Gu Z, Sun D, An X, Chang Z (2014) Integration of biofumigation with antagonistic microorganism can control Phytophthora blight of pepper plants by regulating soil bacterial community structure. Eur J Soil Biol 61:58–67

    Article  CAS  Google Scholar 

  • Weerakoon DMN, Reardon CL, Paulitz TC, Izzo AD, Mazzola M (2012) Long-term suppression of Pythium abappressorium induced by Brassica juncea seed meal amendment is biologically mediated. Soil Biol Biochem 51:44–52

    Article  CAS  Google Scholar 

  • Zhang W, Dick WA, Hoitink HAJ (1996) Compost-induced systemic acquired resistance in cucumber pythium root rot and anthracnose. Phytopathology 86:1066–1070

    Article  Google Scholar 

  • Zhang W, Han DY, Dick WA, Davis KR, Hoitink HAJ (1998) Compost and compost water extract-induced systemic acquired resistance in cucumber and Arabidopsis. Phytopathology 88:450–455

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was financially supported by the National Institute for Agricultural and Food Research and Technology (INIA) of the Spanish Ministry of Science and Innovation (projects RTA-2008-00058-C03 and RTA 2011-00005-C03) and by the Department of Environment, Territorial Planning, Agriculture and Fisheries of the Basque Government (projects CIPASAPI and BIOSOL).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Santiago Larregla .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Larregla, S., del Mar Guerrero, M., Mendarte, S., Lacasa, A. (2015). Biodisinfestation with Organic Amendments for Soil Fatigue and Soil-Borne Pathogens Control in Protected Pepper Crops. In: Meghvansi, M., Varma, A. (eds) Organic Amendments and Soil Suppressiveness in Plant Disease Management. Soil Biology, vol 46. Springer, Cham. https://doi.org/10.1007/978-3-319-23075-7_21

Download citation

Publish with us

Policies and ethics