Skip to main content

Part of the book series: Soil Biology ((SOILBIOL,volume 46))

Abstract

Scientific studies suggest that compost can be used to enhance the suppressiveness of soils. However, the less than desirable and inconsistent levels of disease suppression achieved with compost and compost tea have limited their use as tools for enhancing soil suppressiveness in conventional cropping systems. Such challenges appear to be linked to an incomplete understanding of the microbial ecology of compost-soil-plant and pathogen interactions. This chapter focuses on summarising current knowledge on enhancing soil suppressiveness using compost and compost tea. Predictors and mechanisms of disease suppression are discussed, and factors affecting the efficacy of compost and compost tea are highlighted. Furthermore, the potential application of molecular tools for better understanding the relationship between microbial properties of compost and compost tea and soil suppressiveness is highlighted, and core areas for research are identified.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbasi P, Al-Dahmani J, Sahin F, Hoitink H, Miller S (2002) Effect of compost amendments on disease severity and yield of tomato in conventional and organic production systems. Plant Dis 86(2):156–161

    Article  CAS  Google Scholar 

  • Alabouvette C (1999) Fusarium wilt suppressive soils: an example of disease-suppressive soils. Australas Plant Pathol 28(1):57–64

    Article  Google Scholar 

  • Al-Sadi AM, Al-Habsi N, Al-Kiyumi K, Al-Said FA, Al-Rawahy SA, Ahmed M, Deadman ML, Hussain N (2010) Effect of salinity on growth, reproduction and pectolytic enzyme production by Pythium aphanidermatum: a serious soil borne pathogen of vegetable crops in Oman. In: Ahmed M, Al-Rawahy SA, Hussain N (eds) A monograph on management of salt-affected soils and water for sustainable agriculture. Sultan Qaboos University, Muscat, pp 95–98

    Google Scholar 

  • Asirifi K, Morgan WC, Parbery D (1994) Suppression of sclerotinia soft rot of lettuce with organic soil amendments. Anim Prod Sci 34(1):131–136

    Article  Google Scholar 

  • Atkinson D, Berta G, Hooker JE (1994) Impact of mycorrhizal colonisation on root architecture, root longevity and the formation of growth regulators. In: Gianinazzi S, Schuepp H (eds) Impact of arbuscular mycorrhizas on sustainable agriculture and natural ecosystems. Springer, Berlin, pp 89–99

    Chapter  Google Scholar 

  • Baker R, Chet I (1982) Induction of suppressiveness. In: Schneider RW (ed) Suppressive soils and plant diseases. American Phytopathological Society, St. Paul, MN, pp 35–50

    Google Scholar 

  • Baker K, Cook RJ (1974) Biological control of plant pathogens. WH Freeman and Company, San Francisco, CA

    Google Scholar 

  • Benhamou N, Chet I (1997) Cellular and molecular mechanisms involved in the interaction between Trichoderma harzianum and Pythium ultimum. Appl Environ Microbiol 63(5):2095–2099

    PubMed Central  CAS  PubMed  Google Scholar 

  • Benítez T, Ricón AM, Limón MC, Codón AC (2004) Biocontrol mechanisms of Trichoderma strains. Int Microbiol 7:249–260

    PubMed  Google Scholar 

  • Blaker N, MacDonald J (1983) Influence of container medium pH on sporangium formation, zoospore release, and infection of rhododendron by Phytophthora cinnamomi. Plant Dis 67(3):259–263

    Article  Google Scholar 

  • Boehm MJ, Wu T, Stone AG, Kraakman B, Iannotti DA, Wilson GE, Madden LV, Hoitink H (1997) Cross-polarized magic-angle spinning (sup13) c nuclear magnetic resonance spectroscopic characterization of soil organic matter relative to culturable bacterial species composition and sustained biological control of pythium root rot. Appl Environ Microbiol 63(1):162–168

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bonanomi G, Antignani V, Capodilupo M, Scala F (2010) Identifying the characteristics of organic soil amendments that suppress soilborne plant diseases. Soil Biol Biochem 42(2):136–144

    Article  CAS  Google Scholar 

  • Bonilla N, Gutiérrez-Barranquero JA, Vicente AD, Cazorla FM (2012) Enhancing soil quality and plant health through suppressive organic amendments. Diversity 4(4):475–491

    Article  Google Scholar 

  • Borrero C, Trillas MI, Ordovás J, Tello JC, Avilés M (2004) Predictive factors for the suppression of fusarium wilt of tomato in plant growth media. Phytopathology 94(10):1094–1101

    Article  PubMed  Google Scholar 

  • Borrero C, Trillas M, Delgado A, Avilés M (2012) Effect of ammonium/nitrate ratio in nutrient solution on control of fusarium wilt of tomato by Trichoderma asperellum T34. Plant Pathol 61(1):132–139

    Article  CAS  Google Scholar 

  • Bouizgarne B (2013) Bacteria for plant growth promotion and disease management. In: Maheshwari DK (ed) Bacteria in agrobiology: disease management. Springer, Berlin, pp 15–47

    Chapter  Google Scholar 

  • Brinton WF, Droffner M (1995) The control of plant pathogenic fungi by use of compost teas. Biodynamics 197:12–15

    Google Scholar 

  • Castaño R, Borrero C, Avilés M (2011) Organic matter fractions by SP-MAS 13C NMR and microbial communities involved in the suppression of fusarium wilt in organic growth media. Biol Control 58(3):286–293

    Article  Google Scholar 

  • Chen W, Hoitink H, Schmitthenner A (1987) Factors affecting suppression of pythium damping-off in container media amended with composts. Phytopathology 77(5):755–760

    Article  Google Scholar 

  • Chen W, Hoitink H, Madden L (1988) Microbial activity and biomass in container media for predicting suppressiveness to damping-off caused by Pythium ultimum. Phytopathology 78(11):1447–1450

    Article  Google Scholar 

  • Chernin L, Ismailov Z, Haran S, Chet I (1995) Chitinolytic Enterobacter agglomerans antagonistic to fungal plant pathogens. Appl Environ Microbiol 61(5):1720–1726

    PubMed Central  CAS  PubMed  Google Scholar 

  • Cook RJ, Baker KF (1983) The nature and practice of biological control of plant pathogens. American Phytopathological Society, St. Paul, MN

    Google Scholar 

  • Cordier C, Gianinazzi S, Gianinazzi-Pearson V (1996) Colonisation patterns of root tissues by Phytophthora nicotianae var. parasitica related to reduced disease in mycorrhizal tomato. Plant Soil 185(2):223–232

    Article  CAS  Google Scholar 

  • Cotxarrera L, Trillas-Gay M, Steinberg C, Alabouvette C (2002) Use of sewage sludge compost and Trichoderma asperellum isolates to suppress fusarium wilt of tomato. Soil Biol Biochem 34(4):467–476

    Article  CAS  Google Scholar 

  • Council Directive 91/676/EEC (1991) Protection of waters against pollution caused by nitrates from agricultural sources. Off J L 375:1–8

    Google Scholar 

  • Coventry E, Noble R, Whipps JM (2005) Recycling horticultural wastes to produce pathogen suppressant composts for sustainable vegetable crop production. Final Report EU Project QLRT-2000-01458 RECOVEG

    Google Scholar 

  • Coventry E, Noble R, Mead A, Marin F, Perez J, Whipps J (2006) Allium white rot suppression with composts and Trichoderma viride in relation to sclerotia viability. Phytopathology 96(9):1009–1020

    Article  CAS  PubMed  Google Scholar 

  • Craft CM, Nelson EB (1996) Microbial properties of composts that suppress damping-off and root rot of creeping bentgrass caused by Pythium graminicola. Appl Environ Microbiol 62(5):1550–1557

    PubMed Central  CAS  PubMed  Google Scholar 

  • Cronin M, Yohalem D, Harris R, Andrews J (1996) Putative mechanism and dynamics of inhibition of the apple scab pathogen Venturia inaequalis by compost extracts. Soil Biol Biochem 28(9):1241–1249

    Article  CAS  Google Scholar 

  • Da Mota FF, Gomes EA, Seldin L (2008) Auxin production and detection of the gene coding for the auxin efflux carrier (AEC) protein in Paenibacillus polymyxa. J Microbiol 46(3):257–264

    Article  PubMed  CAS  Google Scholar 

  • De Weger L, Van Boxtel R, Van der Burg B, Gruters R, Geels F, Schippers B, Lugtenberg B (1986) Siderophores and outer membrane proteins of antagonistic, plant-growth-stimulating, root-colonizing Pseudomonas spp. J Bacteriol 165(2):585–594

    PubMed Central  PubMed  Google Scholar 

  • Deepa C, Dastager SG, Pandey A (2010) Plant growth-promoting activity in newly isolated Bacillus thioparus (NII-0902) from Western ghat forest, India. World J Microbiol Biotechnol 26(12):2277–2283

    Article  Google Scholar 

  • Dickerson GW (1999) Damping-off and root rot. BioCycle 40:62–63

    CAS  Google Scholar 

  • Dimitri C, Greene C (2000) Recent growth patterns in the US organic foods market. Agriculture Information Bulletin, vol 777. USDA Economic Research Service, Washington, DC

    Google Scholar 

  • Dukare AS, Prasanna R, Chandra Dubey S, Nain L, Chaudhary V, Singh R, Saxena AK (2011) Evaluating novel microbe amended composts as biocontrol agents in tomato. Crop Prot 30(4):436–442

    Article  Google Scholar 

  • El-Masry M, Khalil A, Hassouna M, Ibrahim H (2002) In situ and in vitro suppressive effect of agricultural composts and their water extracts on some phytopathogenic fungi. World J Microbiol Biotechnol 18(6):551–558

    Article  CAS  Google Scholar 

  • El-Tarabily KA (2008) Promotion of tomato (Lycopersicon esculentum Mill.) plant growth by rhizosphere competent 1-aminocyclopropane-1-carboxylic acid deaminase-producing streptomycete actinomycetes. Plant Soil 308(1–2):161–174

    Article  CAS  Google Scholar 

  • Erhart E, Burian K, Hartl W, Stich K (1999) Suppression of Pythium ultimum by biowaste composts in relation to compost microbial biomass, activity and content of phenolic compounds. J Phytopathol 147(5):299–305

    Article  CAS  Google Scholar 

  • Escuadra GME, Amemiya Y (2008) Suppression of Fusarium wilt of spinach with compost amendments. J Gen Plant Pathol 74(4):267–274

    Article  Google Scholar 

  • Fichtner E, Benson D, Diab H, Shew H (2004) Abiotic and biological suppression of Phytophthora parasitica in a horticultural medium containing composted swine waste. Phytopathology 94(7):780–788

    Article  CAS  PubMed  Google Scholar 

  • Fuchs J (2002) Practical use of quality compost for plant health and vitality improvement. In: Insam H, Riddech N, Klammer S (eds) Microbiology of composting. Springer, Heidelberg, pp 435–444

    Chapter  Google Scholar 

  • Hadar Y, Gorodecki B (1991) Suppression of germination of sclerotia of Sclerotium rolfsii in compost. Soil Biol Biochem 23(3):303

    Article  Google Scholar 

  • Hadar Y, Papadopoulou KK (2012) Suppressive composts: microbial ecology links between abiotic environments and healthy plants. Annu Rev Phytopathol 50:133–153

    Article  CAS  PubMed  Google Scholar 

  • Heringa SD, Kim J, Jiang X, Doyle M, Erickson M (2010) Use of a mixture of bacteriophages for biological control of Salmonella enterica strains in compost. Appl Environ Microbiol 76(15):5327–5332

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hoitink H, Boehm M (1999) Biocontrol within the context of soil microbial communities: a substrate-dependent phenomenon. Annu Rev Phytopathol 37(1):427–446

    Article  CAS  PubMed  Google Scholar 

  • Hoitink HAJ, Fahy PC (1986) Basis for the control of soilborne plant pathogens with composts. Annu Rev Phytopathol 24(1):93–114

    Article  Google Scholar 

  • Hoitink H, Ramos L (2008) Impacts of composts on soil and plant health. Ohio State University. http://plantpath.osu.edu/people-and-programs/faculty-directory/emeritus/hoitink-harry-a-j/hoitink-ramos-acorbat2008-3.doc. Accessed 26 June 2011

  • Hoitink H, Daughtrey M, Tayama H (1987) Control of cyclamen fusarium wilt—a preliminary report. Ohio Florists Assoc Bull 693:1–3

    Google Scholar 

  • Hoitink H, Inbar Y, Boehm M (1991) Status of compost-amended potting mixes naturally suppressive to soilborne diseases of floricultural crops. Plant Dis 75(9):869

    Article  Google Scholar 

  • Hoitink H, Stone A, Grebus M (1996) Suppression of plant disease by composts. In: De Bertoldi M (ed) The science of composting, vol 4. Chapman and Hall, London, pp 373–381

    Chapter  Google Scholar 

  • Hoitink H, Stone A, Han D (1997) Suppression of plant diseases by composts. HortSci 32(2):184–187

    Google Scholar 

  • Hoitink HA, Madden LV, Dorrance AE (2006) Systemic resistance induced by Trichoderma spp.: interactions between the host, the pathogen, the biocontrol agent, and soil organic matter quality. Phytopathology 96(2):186–189

    Article  CAS  PubMed  Google Scholar 

  • Hornby D (1983) Suppressive soils. Annu Rev Phytopathol 21(1):65–85

    Article  Google Scholar 

  • Horst LE, Locke J, Krause CR, McMahon RW, Madden LV, Hoitink HAJ (2005) Suppression of Botrytis Blight of Begonia by Trichoderma hamatum 382 in peat and compost-amended potting mixes. Plant Dis 89(11):1195–1200. doi:10.1094/pd-89-1195

    Article  Google Scholar 

  • Hsiang T, Tian L (2007) Compost tea for control of dollar spot. Annual research report 2007, University of Guelph Ontario

    Google Scholar 

  • Insam H, Riddech N, Klammer S (2002) Microbiology of composting. Springer, Heidelberg

    Book  Google Scholar 

  • Islam MR, Mondal C, Hossain I, Meah MB (2013a) Organic management: an alternative to control late blight of potato and tomato caused by Phytophthora infestans. Int J Theor Appl Sci 5(2):32–42

    Google Scholar 

  • Islam R, Mondal C, Hossain I, Meah MB (2013b) Compost tea and poultry litter extract: alternative organic management approaches for stem canker of potato caused by Rhizoctonia solani. J Agric Sci 5(10):261–272

    Google Scholar 

  • Islam M, Mondal C, Hossain I, Meah M (2014) Compost tea as soil drench: an alternative approach to control bacterial wilt in brinjal. Arch Phytopathol Plant Prot 47(12):1475–1488

    Google Scholar 

  • Jones JB, Jones JP, Stall RE, Zitter TA (1991) Compendium of tomato diseases. American Phytopathological Society, St. Paul, MN

    Google Scholar 

  • Jones JP, Engelhard AW, Woltz S (1993) Management of Fusarium wilt of vegetables and ornamentals by macro- and micro-element nutrition. In: Engelhard WA (ed) Soilborne plant pathogens: management of diseases with macro- and microelements. The American Phytopathological Society, St. Paul, MN, pp 18–32

    Google Scholar 

  • Joshi D, Hooda K, Bhatt J, Mina B, Gupta H (2009) Suppressive effects of composts on soil-borne and foliar diseases of French bean in the field in the western Indian Himalayas. Crop Prot 28(7):608–615

    Article  Google Scholar 

  • Kavroulakis N, Papadopoulou KK, Ntougias S, Zervakis GI, Ehaliotis C (2006) Cytological and other aspects of pathogenesis-related gene expression in tomato plants grown on a suppressive compost. Ann Bot 98(3):555–564

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Keen N (1990) Gene-for-gene complementarity in plant-pathogen interactions. Annu Rev Genet 24(1):447–463

    Article  CAS  PubMed  Google Scholar 

  • Kelloway S (2012) Compost tea for the management of dollar spot (Sclerotinia homoeocarpa) on turfgrass. Dalhousie University, Halifax, NS

    Google Scholar 

  • Khan J, Ooka J, Miller S, Madden L, Hoitink H (2004) Systemic resistance induced by Trichoderma hamatum 382 in cucumber against phytophthora crown rot and leaf blight. Plant Dis 88(3):280–286

    Article  Google Scholar 

  • Kim K, Nemec S, Musson G (1997) Effects of composts and soil amendments on soil microflora and phytophthora root and crown rot of bell pepper. Crop Prot 16(2):165–172

    Article  Google Scholar 

  • Kim YH, Kwon EJ, Kim SK, Jeong YS, Kim J, Yun HD, Kim H (2010) Molecular cloning and characterization of a novel family VIII alkaline esterase from a compost metagenomic library. Biochem Biophys Res Commun 393(1):45–49

    Article  CAS  PubMed  Google Scholar 

  • Kiss L (2003) A review of fungal antagonists of powdery mildews and their potential as biocontrol agents. Pest Manag Sci 59(4):475–483

    Article  CAS  PubMed  Google Scholar 

  • Ko W (1982) Effects of nutritional factors on chemical and soil microbiostasis. Research series, vol 012. University of Hawaii, Hilo, Hawaii

    Google Scholar 

  • Kwok O, Fahy P, Hoitink HAJ, Kuter G (1987) Interactions between bacteria and Trichoderma hamatum in suppression of rhizoctonia damping-off in bark compost media. Phytopathology 77(8):1206–1212

    Article  Google Scholar 

  • Larkin RP (2008) Relative effects of biological amendments and crop rotations on soil microbial communities and soilborne diseases of potato. Soil Biol Biochem 40(6):1341–1351

    Article  CAS  Google Scholar 

  • Lazarovits G (2014) Discovering the value of compost. http://www.compost.org/English/PDF/free-webinars/CCC_Webinar_Feb_5_2014.pdf. Accessed 19 Oct 2014

  • Lazarovits G, Conn K, Abbasi P, Tenuta M (2005) Understanding the mode of action of organic soil amendments provides the way for improved management of soilborne plant pathogens. Acta Hortic 698:215–224

    Article  Google Scholar 

  • Litterick A, Wood M (2009) The use of composts and compost extracts in plant disease control. In: Walters D (ed) Disease control in crops: biological and environmentally friendly approaches. Wiley-Blackwell, Oxford, pp 93–121

    Chapter  Google Scholar 

  • Litterick AM, Harrier L, Wallace P, Watson CA, Wood M (2004) The role of uncomposted materials, composts, manures, and compost extracts in reducing pest and disease incidence and severity in sustainable temperate agricultural and horticultural crop production—a review. Crit Rev Plant Sci 23(6):453–479

    Article  Google Scholar 

  • Lockwood JL (1990) Relation of energy stress to behaviour of soil-borne plant pathogens and to disease development. In: Hornby D (ed) Biological control of soil-borne plant pathogens. CAB International, Wallingford, pp 197–214

    Google Scholar 

  • Lodha S, Sharma SK, Aggarwal RK (2002) Inactivation of Macrophomina phaseolina propagules during composting and effect of composts on dry root rot severity and on seed yield of clusterbean. Eur J Plant Pathol 108(3):253–261

    Article  Google Scholar 

  • Lumsden R, Locke J, Adkins S, Walter J, Ridout C (1992) Isolation and localization of the antibiotics gliotoxin produced by Gliocladium virens from alginate prill in soil and soilless media. Phytopathology 82(2):230–235

    Article  CAS  Google Scholar 

  • MacDonald J (1982) Effect of salinity stress on the development of phytophthora root rot of Chrysanthemum. Phytopathology 72(2):214–219

    Article  Google Scholar 

  • Mahaffee W, Scheuerell S (2006) Compost teas: alternative approaches to the biological control of plant diseases. In: Bailey M, Lilley A, Timms-Wilson T, Spencer-Phillips P (eds) Microbial ecology of aerial plant surfaces. CAB International, London, pp 165–179

    Chapter  Google Scholar 

  • Manandhar T, Yami K (2008) Biological control of foot rot disease of rice using fermented products of compost and vermicompost. Sci World 6(6):52–57

    Google Scholar 

  • St. Martin CCG (2014) Potential of compost tea for suppressing plant diseases. CAB Rev 9(32):1–12

    Google Scholar 

  • St. Martin CCG, Brathwaite RAI (2012) Compost and compost tea: principles and prospects as substrates and soil-borne disease management strategies in soil-less vegetable production. Biol Agric Hortic 28(1):1–33

    Article  Google Scholar 

  • St. Martin CCG, Dorinvil W, Brathwaite RAI, Ramsubhag A (2012) Effects and relationships of compost type, aeration and brewing time on compost tea properties, efficacy against Pythium ultimum, phytotoxicity and potential as a nutrient amendment for seedling production. Biol Agric Hortic 28(3):185–205

    Article  Google Scholar 

  • Matz C, Kjelleberg S, Givskov M (2007) Biofilms as refuge against predation. In: Kjelleberg S, Givskov M (eds) The biofilm mode of life: mechanisms and adaptations. Horizon Bioscience, Norwich, pp 195–213

    Google Scholar 

  • Mazzola M (2004) Assessment and management of soil microbial community structure for disease suppression. Annu Rev Phytopathol 42:35–59. doi:10.1146/annurev.phyto.42.040803.140408

    Article  CAS  PubMed  Google Scholar 

  • Mazzola M (2007) Manipulation of rhizosphere bacterial communities to induce suppressive soils. J Nematol 39(3):213–220

    PubMed Central  PubMed  Google Scholar 

  • McKellar ME, Nelson EB (2003) Compost-induced suppression of pythium damping-off is mediated by fatty-acid-metabolizing seed-colonizing microbial communities. Appl Environ Microbiol 69(1):452–460

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mehta C, Palni U, Franke-Whittle I, Sharma A (2014) Compost: its role, mechanism and impact on reducing soil-borne plant diseases. Waste Manag 34(3):607–622

    Article  CAS  PubMed  Google Scholar 

  • Merriman P (1976) Survival of sclerotia of Sclerotinia sclerotiorum in soil. Soil Biol Biochem 8(5):385–389

    Article  CAS  Google Scholar 

  • Meyer JR, Linderman R (1986) Selective influence on populations of rhizosphere or rhizoplane bacteria and actinomycetes by mycorrhizas formed by Glomus fasciculatum. Soil Biol Biochem 18(2):191–196

    Article  Google Scholar 

  • Nelson E, Kuter G, Hoitink H (1983) Effects of fungal antagonists and compost age on suppression of Rhizoctonia damping-off in container media amended with composted hardwood bark. Phytopathology 73(10):1457–1462

    Article  Google Scholar 

  • Nitta T (1991) Diversity of root fungal floras: its implications for soil-borne diseases and crop growth. Jpn Agric Res Q 25(1):6–11

    Google Scholar 

  • NOSB (2004) Compost tea task force report. National Organic Standards Board, Washington, DC

    Google Scholar 

  • Ntougias S, Papadopoulou KK, Zervakis GI, Kavroulakis N, Ehaliotis C (2008) Suppression of soil-borne pathogens of tomato by composts derived from agro-industrial wastes abundant in Mediterranean regions. Biol Fertil Soils 44(8):1081–1090

    Article  Google Scholar 

  • Oritsejafor JJ (1986) Influence of moisture and pH on growth and survival of Fusarium oxysporum f.sp. elaeidis in soil. Trans Br Mycol Soc 87(4):511–517

    Article  Google Scholar 

  • Pal KK, Gardener BM (2006) Biological control of plant pathogens. Plant Health Instructor 2:1117–1142

    Google Scholar 

  • Palmer A, Evans K, Metcalf D (2010) Characters of aerated compost tea from immature compost that limit colonization of bean leaflets by Botrytis cinerea. J Appl Microbiol 109(5):1619–1631

    CAS  PubMed  Google Scholar 

  • Pane C, Spaccini R, Piccolo A, Scala F, Bonanomi G (2011) Compost amendments enhance peat suppressiveness to Pythium ultimum, Rhizoctonia solani and Sclerotinia minor. Biol Control 56(2):115–124

    Article  Google Scholar 

  • Pane C, Celano G, Villecco D, Zaccardelli M (2012) Control of Botrytis cinerea, Alternaria alternata and Pyrenochaeta lycopersici on tomato with whey compost-tea applications. Crop Prot 38:80–86

    Article  Google Scholar 

  • Pang H, Zhang P, Duan C-J, Mo X-C, Tang J-L, Feng J-X (2009) Identification of cellulase genes from the metagenomes of compost soils and functional characterization of one novel endoglucanase. Curr Microbiol 58(4):404–408

    Article  CAS  PubMed  Google Scholar 

  • Pantelides IS, Tjamos SE, Striglis IA, Chatzipavlidis I, Paplomatas EJ (2009) Mode of action of a non-pathogenic Fusarium oxysporum strain against Verticillium dahliae using Real Time QPCR analysis and biomarker transformation. Biol Control 50(1):30–36

    Article  Google Scholar 

  • Pascual JA, Garcia C, Hernandez T, Lerma S, Lynch JM (2002) Effectiveness of municipal waste compost and its humic fraction in suppressing Pythium ultimum. Microb Ecol 44(1):59–68

    Article  CAS  PubMed  Google Scholar 

  • Pera A, Filippi C (1987) Controlling of fusarium wilt in carnation with bark compost. Biol Wastes 22(3):219–228

    Article  Google Scholar 

  • Phae CG, Shoda M, Kubota H (1990) Suppressive effect of Bacillus subtilis and it’s products on phytopathogenic microorganisms. J Ferment Bioeng 69(1):1–7

    Article  CAS  Google Scholar 

  • Pharand B, Carisse O, Benhamou N (2002) Cytological aspects of compost-mediated induced resistance against fusarium crown and root rot in tomato. Phytopathology 92(4):424–438

    Article  PubMed  Google Scholar 

  • Postma J, Schilder MT, Bloem J, van Leeuwen-Haagsma WK (2008) Soil suppressiveness and functional diversity of the soil microflora in organic farming systems. Soil Biol Biochem 40(9):2394–2406

    Article  CAS  Google Scholar 

  • Pratt JAR (2003) The use of green-waste compost in the biological control of Fusarium seedling blight caused by Microdochium nivale. Open University, Milton Keynes

    Google Scholar 

  • Rangarajan A, Tuttle McGrath M, Bloemgren T (2001) Evaluation of two commercially available composts for managing phytophthora fruit rot of pumpkins. www.hort.cornell.edu/extension/commercial/vegetables/online/2001veg/pdfs/text/IPMfinalreportPumpkins.pdf. Accessed 15 Dec 2007

  • Ryckeboer J (2001) Biowaste and yard waste composts: microbiological and hygienic aspects: suppressiveness to plant diseases. Katholieke Universiteit Leuven, Faculteit Landbouwkundige en Toegepaste, Biologische Wetenschappen, Laboratorium voor Fytopathologie en Plantenbescherming

    Google Scholar 

  • Ryu C-M, Hu C-H, Locy RD, Kloepper JW (2005) Study of mechanisms for plant growth promotion elicited by rhizobacteria in Arabidopsis thaliana. Plant Soil 268(1):285–292

    Article  CAS  Google Scholar 

  • Sang MK, Kim KD (2011) Biocontrol activity and primed systemic resistance by compost water extracts against anthracnoses of pepper and cucumber. Phytopathology 101(6):732–740

    Article  CAS  PubMed  Google Scholar 

  • Sang MK, Kim JG, Kim KD (2010) Biocontrol activity and induction of systemic resistance in pepper by compost water extracts against Phytophthora capsici. Phytopathology 100(8):774–783

    Article  PubMed  Google Scholar 

  • Scheuerell S, Mahaffee W (2002) Compost tea: principles and prospects for plant disease control. Compost Sci Util 10(4):313–338

    Article  Google Scholar 

  • Scheuerell SJ, Mahaffee WF (2006) Variability associated with suppression of gray mold (Botrytis cinerea) on Geranium by foliar applications of nonaerated and aerated compost teas. Plant Dis 90(9):1201–1208

    Article  Google Scholar 

  • Serra-Wittling C, Houot S, Alabouvette C (1996) Increased soil suppressiveness to Fusarium wilt of flax after addition of municipal solid waste compost. Soil Biol Biochem 28(9):1207–1214

    Article  CAS  Google Scholar 

  • Siddiqui IA, Shaukat SS (2002) Mixtures of plant disease suppressive bacteria enhance biological control of multiple tomato pathogens. Biol Fertil Soils 36(4):260–268

    Article  Google Scholar 

  • Siddiqui Y, Meon S, Ismail R, Rahmani M, Ali A (2008) Bio-efficiency of compost extracts on the wet rot incidence, morphological and physiological growth of okra Abelmoschus esculentus [(L.) Moench]). Sci Hortic 117(1):9–14

    Article  Google Scholar 

  • Sivan A, Chet I (1989) The possible role of competition between Trichoderma harzianum and Fusarium oxysporum on rhizosphere colonization. Phytopathology 79(2):198–203

    Article  Google Scholar 

  • Spencer S, Benson D (1981) Root rot of Aucuba japonica caused by Phytophthora cinnamomi and Phytophthora citricola and suppressed with bark media. Plant Dis 65:918–921

    Article  Google Scholar 

  • Spencer S, Benson D (1982) Pine bark, hardwood bark compost, and peat amendment effects on development of Phytophthora spp. and Lupine root rot. Phytopathology 72(3):346–351

    Google Scholar 

  • Spring D, Ellis M, Spotts R, Hoitink H, Schmitthenner A (1980) Suppression of the apple collar rot pathogen in composted hardwood bark. Phytopathology 70(12):1209–1212

    Article  Google Scholar 

  • St. Martin CCG (2013) Rotary drum compost and compost tea as substrates, amendments, and biocontrol agents for damping-off (Pythium ultimum) management in tomato (Solanum lycopersicum) The University of the West Indies, St. Augustine

    Google Scholar 

  • St. Martin CCG, Ramsubhag A (2014) Potential of compost for controlling plant diseases. In: Sangeetha S, Kurucheve V, Jayaraman J (eds) Natural products for sustainable crop disease management. CAB International, Wallingford, pp 345–388

    Google Scholar 

  • Stockwell C, Nelson E, Craft C (1994) Biological control of Pythium graminicola and other soilborne pathogens of turfgrass with actinomycetes from composts. Phytopathology 84:1113

    Google Scholar 

  • Stone A, Vallad G, Cooperband L, Rotenberg D, Darby H, James R, Stevenson W, Goodman R (2003) Effect of organic amendments on soilborne and foliar diseases in field-grown snap bean and cucumber. Plant Dis 87(9):1037–1042

    Article  Google Scholar 

  • Stone A, Scheuerell S, Darby H, Magdoff F, Ray R (2004) Suppression of soilborne diseases in field agricultural systems: organic matter management, cover cropping, and other cultural practices. In: Magdoff F, Weil RR (eds) Soil organic matter in sustainable agriculture. CRC Press, Boca Raton, pp 131–177

    Google Scholar 

  • Tenuta M, Conn KL, Lazarovits G (2002) Volatile fatty acids in liquid swine manure can kill microsclerotia of Verticillium dahliae. Phytopathology 92(5):548–552

    Article  CAS  PubMed  Google Scholar 

  • Tilston E, Pitt D, Fuller M, Groenhof A (2005) Compost increases yield and decreases take-all severity in winter wheat. Field Crops Res 94(2):176–188

    Article  Google Scholar 

  • Timmusk S, Nicander B, Granhall U, Tillberg E (1999) Cytokinin production by Paenibacillus polymyxa. Soil Biol Biochem 31(13):1847–1852

    Article  CAS  Google Scholar 

  • Trankner A (1992) Use of agricultural and municipal organic wastes to develop suppressiveness to plant pathogens. In: Tjamos E, Papavizas G, Cook R (eds) Biological control of plant diseases: progress and challenges for the future. Plenum Press, New York, pp 35–42

    Chapter  Google Scholar 

  • Vallad GE, Goodman RM (2004) Systemic acquired resistance and induced systemic resistance in conventional agriculture. Crop Sci 44(6):1920–1934

    Article  Google Scholar 

  • Vallad GE, Cooperband L, Goodman RM (2003) Plant foliar disease suppression mediated by composted forms of paper mill residuals exhibits molecular features of induced resistance. Physiol Mol Plant Pathol 63(2):65–77

    Article  CAS  Google Scholar 

  • van Bruggen AH, Termorskuizen AJ (2003) Integrated approaches to root disease management in organic farming systems. Australas Plant Pathol 32(2):141–156

    Article  Google Scholar 

  • Van Schoor L, Denman S, Cook N (2009) Characterisation of apple replant disease under South African conditions and potential biological management strategies. Sci Hortic 119(2):153–162

    Article  Google Scholar 

  • Vinale F, Flematti G, Sivasithamparam K, Lorito M, Marra R, Skelton BW, Ghisalberti EL (2009) Harzianic acid, an antifungal and plant growth promoting metabolite from Trichoderma harzianum. J Natl Prod 72(11):2032–2035

    Article  CAS  Google Scholar 

  • von der Weid I, Duarte GF, van Elsas JD, Seldin L (2002) Paenibacillus brasilensis sp. nov., a novel nitrogen-fixing species isolated from the maize rhizosphere in Brazil. Int J Syst Evol Microbiol 52(6):2147–2153

    PubMed  Google Scholar 

  • Wei G, Kloepper JW, Tuzun S (1991) Induction of systemic resistance of cucumber to Colletotrichum orbiculare by select strains of plant growth-promoting rhizobacteria. Phytopathology 81(11):1508–1512

    Article  Google Scholar 

  • Woltz SS, Jones JP (1981) Nutritional requirements of Fusarium oxysporum: basis for a disease control system. In: Nelson PE, Toussoun TA, Cook RJ (eds) Fusarium: diseases, biology and taxonomy. The Pennsylvania State University Press, University Park, pp 340–349

    Google Scholar 

  • Yogev A, Raviv M, Hadar Y, Cohen R, Katan J (2006) Plant waste-based composts suppressive to diseases caused by pathogenic Fusarium oxysporum. Eur J Plant Pathol 116(4):267–278

    Article  Google Scholar 

  • Zaccardelli M, Perrone D, Pane C, Pucci N, Infantino A (2011) Control of corky root of tomato with compost and role of spore-forming bacteria to inhibit Pyrenochaeta lycopersici. Acta Hortic (ISHS) 914:393–396

    Article  Google Scholar 

  • Zhang W, Dick W, Hoitink H (1996) Compost-induced systemic acquired resistance in cucumber to Pythium root rot and anthracnose. Phytopathology 86(10):1066–1070

    Article  Google Scholar 

  • Zhang W, Han D, Dick W, Davis K, Hoitink H (1998) Compost and compost water extract-induced systemic acquired resistance in cucumber and Arabidopsis. Phytopathology 88(5):450–455

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chaney C. G. St. Martin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

St. Martin, C.C.G. (2015). Enhancing Soil Suppressiveness Using Compost and Compost Tea. In: Meghvansi, M., Varma, A. (eds) Organic Amendments and Soil Suppressiveness in Plant Disease Management. Soil Biology, vol 46. Springer, Cham. https://doi.org/10.1007/978-3-319-23075-7_2

Download citation

Publish with us

Policies and ethics