Skip to main content

The Impact of Silicon Amendment on Suppression of Bacterial Wilt Caused by Ralstonia solanacearum in Solanaceous Crops

  • Chapter
Organic Amendments and Soil Suppressiveness in Plant Disease Management

Part of the book series: Soil Biology ((SOILBIOL,volume 46))

  • 1838 Accesses

Abstract

Silicon is the second most abundant element in the lithosphere and is known to alleviate abiotic and biotic stresses and increase the resistance of plants to pathogenic bacteria such as bacterial wilt caused by Ralstonia solanacearum. Different studies have suggested that silicon(Si) activates plant defense mechanism, yet the exact nature of the interaction between the element and biochemical pathways leading to resistance remains unclear. One of the resistance mechanism is silicon deposition in leaf which impedes pathogen penetration that acts as a physical barrier. However, in a non-silicon accumulator plant such as solanaceous crops, the silicon-related protection is based on induction of systemic resistance rather than on the formation of a mechanical barrier. Si-treated plant increase the activities and production of defense-related enzyme such as peroxidase (POD), phenylalanine ammonia lyase (PAL), and polyphenol oxidase (PPO). Furthermore, molecular analysis showed that Si can trigger the expression of defense-related genes and may play an important role in the transduction of plant stress signal such as salicylic acid.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agrios GN (1997) Plant pathology, 4th edn. Academic Press Inc., San Diego, CA

    Google Scholar 

  • Asselbergh B, De Vleesschauwer D, Höfte M (2008) Global switches and fine-tuning-ABA modulates plant pathogen defense. Mol Plant Microbe Interact 21:709–719

    Article  CAS  PubMed  Google Scholar 

  • Basagli MAB, Moraes JC, Carvalho GA, Ecole CC, Gonçalves-Gervásio RCR (2003) Effect of sodium silicate application on the resistance of wheat plants to the green-aphids Schizaphis graminum (Rond.) (Hemiptera: Aphididae). Neotrop Entomol 32:659–663

    Article  CAS  Google Scholar 

  • Boucher CA, Gough CL, Arlat M (1992) Molecular genetics of pathogenicity determinants of Pseudomonas solanacearum with special emphases on hrp genes. Annu Rev Phytopathol 30:443–461

    Article  CAS  Google Scholar 

  • Buddenhagen IW, Sequeira L, Kelman A (1962) Designation of races in Pseudomonas solanacearum. Phytopathology 52:726

    Google Scholar 

  • Cai KZ, Gao D, Luo SM, Zeng RS, Yang JY, Zhu XY (2008) Physiological and cytological mechanisms of silicon induced resistance in rice against blast disease. Physiol Plant 134:324–333

    Article  CAS  PubMed  Google Scholar 

  • Cai K, Gao D, Chen J, Luo S (2009) Probing the mechanisms of silicon-mediated pathogen resistance. Plant Signal Behav 4:1–3

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chérif M, Menzies JG, Ehret DL, Bogdanoff C, Bélanger RR (1994) Yield of cucumber infected with Pythium aphanidermatum when grown with soluble silicon. Hortic Sci 29:896–897

    Google Scholar 

  • Ciampi-Panno L, Fernandez C, Bustamante P, Andrade N, Ojeda S, Conteras A (1989) Biological control of bacterial wilt of potatoes caused by Pseudomonas solanacearum. Am Potato J 66:315–332

    Article  Google Scholar 

  • Conrath U (2006) Systemic acquired resistance. Plant Signal Behav 4:179–184

    Article  Google Scholar 

  • Conrath U, Pieterse CMJ, Mauch-Mani B (2002) Priming in plant-pathogen interactions. Trends Plant Sci 7:210–216

    Article  CAS  PubMed  Google Scholar 

  • Conrath U, Beckers GJM, Flors V, García-Agustín P, Jakab G, Mauch F et al (2006) Priming: getting ready for battle. Mol Plant Microbe Interact 19:1062–1071

    Article  CAS  PubMed  Google Scholar 

  • Cook D, Sequeira L (1994) Strain differentiation of Pseudomonas solanacearum by molecular genetic methods. In: Hayward AC, Hartman GL (eds) Bacterial wilt: the disease and its causative agent, Pseudomonas solanacearum. CAB International, Wallingford, pp 77–94

    Google Scholar 

  • Cook D, Barlow E, Sequeira L (1989) Genetic diversity of Pseudomonas solanacearum : detection of restriction fragment length polymorphisms with DNA probes that specify virulence and the hypersensitive response. Mol Plant Microbe Interact 2:113–121

    Article  Google Scholar 

  • Dahlgren RA (1993) Comparison of soil solution extraction procedures: effect on solute chemistry. Commun Soil Sci Plant Anal 24:1783–1794

    Article  CAS  Google Scholar 

  • Dakora FD, Nelwamondo A (2003) Silicon nutrition promotes root growth and tissue mechanical strength in symbiotic cowpea. Funct Plant Biol 30:947–953

    Article  CAS  Google Scholar 

  • Dannon EA, Wydra K (2004) Interaction between silicon amendment, bacterial wilt development and phenotype of Ralstonia solanacearum in tomato genotypes. Physiol Mol Plant Pathol 64:233–243

    Article  CAS  Google Scholar 

  • Datnoff LE, Deren CW, Snyder GH (1997) Silicon fertilization for disease management of rice in Florida. Crop Prot 16:525–531

    Article  CAS  Google Scholar 

  • Datta K, Muthukrishnan S (1999) Pathogenesis-related proteins in plants, 1st edn. CRC Press, Boca Raton

    Book  Google Scholar 

  • Denny TP (2006) Plant pathogenic Ralstonia species. In: Gnanamanickam SS (ed) Plant associated bacteria. Springer, Dordrecht, pp 573–644

    Chapter  Google Scholar 

  • Diogo VCR, Wydra K (2007) Silicon-induced basal resistance in tomato against Ralstonia solanacearum is related to modification of pectic cell wall polysaccharide structure. Physiol Mol Plant Pathol 70:120–129

    Article  CAS  Google Scholar 

  • Durrant WE, Dong X (2004) Systemic acquired resistance. Annu Rev Phytopathol 42:185–209

    Article  CAS  PubMed  Google Scholar 

  • Epstein E (1994) The anomaly of silicon in plant biology. Proc Natl Acad Sci U S A 91:11–17

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Epstein E (1999) Silicon. Annu Rev Plant Physiol Plant Mol Biol 50:641–664

    Article  CAS  PubMed  Google Scholar 

  • Fauteux F, Remus-Borel W, Menzies JG, Bélanger RR (2005) Silicon and plant disease resistance against pathogenic fungi. FEMS Microbiol Lett 249:1–6

    Article  CAS  PubMed  Google Scholar 

  • Fauteux F, Chain F, Belzile F, Menzies J, Bélanger RR (2006) The protective role silicon in the Arabidopsis-powdery mildew pathosystem. Proc Natl Acad Sci U S A 103:17554–17559

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fawe A, Abou-Zaid M, Menzies JG, Bélanger RR (1998) Silicon-mediated accumulation of flavonoid phytoalexins in cucumber. Phytopathology 88:396–401

    Article  CAS  PubMed  Google Scholar 

  • Fegan M, Prior P (2005) How complex is the “Ralstonia solanacearum species complex”. In: Allen C, Prior P, Hayward AC (eds) Bacterial wilt disease and the Ralstonia solanacearum species complex. APS Press, Madison, WI, pp 449–462

    Google Scholar 

  • Fegan M, Prior P (2006) Diverse members of the Ralstonia solanacearum species complex cause bacterial wilts of banana. Aust Plant Pathol 35:93–101

    Article  Google Scholar 

  • French ER, Sequeira L (1970) Strains of Pseudomonas solanacearum from Central and South America: a comparative study. Phytopathology 60:506–512

    Article  Google Scholar 

  • Frost CJ, Mescher MC, Carlson JE, De Moraes CM (2008) Plant defense priming against herbivores: getting ready for a different battle. Plant Physiol 146:818–824

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gao X, Zou C, Wang L, Zhang F (2004) Silicon improves water use efficiency in maize plants. J Plant Nutr 27:1457–1470

    Article  CAS  Google Scholar 

  • Genin S, Boucher C (2002) Ralstonia solanacearum: secrets of major pathogen unveiled by analysis of its genome. Mol Plant Pathol 3(3):111–118

    Article  PubMed  Google Scholar 

  • Genin S, Boucher C (2004) Lessons learned from the genome analysis of Ralstonia solanacearum. Annu Rev Phytopathol 42:107–134

    Article  CAS  PubMed  Google Scholar 

  • Ghareeb H, Bozsó Z, Ott PG, Repenning C, Stahl F, Wydra K (2011) Transcriptome of silicon-induced resistance against Ralstonia solanacearum in the silicon non accumulator tomato implicates priming effect. Physiol Mol Plant Pathol 75:83–89

    Article  CAS  Google Scholar 

  • Hammond-Kosack KE, Jones JDG (1996) Resistance gene-dependent plant defense responses. Plant Cell 8:1773–1791

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hayward AC (1964) Characterization of Pseudomonas solanacearum. J Appl Bacteriol 27:265–277

    Article  Google Scholar 

  • Hayward AC (1991) Biology and epidemiology of bacterial wilt caused by Pseudomonas solanacearum. Annu Rev Phytopathol 29:67–87

    Google Scholar 

  • Hayward AC (1994) The hosts of Pseudomonas solanacearum. In: Hayward AC, Hartman GL (eds) Bacterial wilt: the disease and its causative agent Pseudomonas solanacearum. CAB International, Oxford, pp 9–24

    Google Scholar 

  • Hayward AC (1995) Pseudomonas solanacearum pathogens and host specificity in plant disease: histopathological, biochemical, genetic and molecular bases. In: Singh US, Singh RP, Kohmoto K (eds) Prokaryotes. Elsevier Science, Inc., Tarry Town, NY, pp 139–151

    Chapter  Google Scholar 

  • He LY, Sequiera L, Kelman A (1983) Characteristics of strains of Pseudomonas solanacearum from China. Plant Dis 67:1357–1361

    Article  Google Scholar 

  • Iriti M, Faoro F (2003) Does benzothiadiazole-induced resistance increase fitness cost in bean? J Plant Pathol 85:265–270

    CAS  Google Scholar 

  • Jiang F, Zheng X, Chen J (2009) Microarray analysis of gene expression profile induced by the biocontrol yeast Cryptococcus laurentii in cherry tomato fruit. Gene 430:12–16

    Article  PubMed  Google Scholar 

  • Kersters K, Ludwig W, Vancanneyt M, De Vos P, Gillis M, Schleifer KH (1996) Recent changes in the classification of pseudomonas: an overview. Syst Appl Microbiol 19:465–477

    Article  Google Scholar 

  • Kurabachew H, Wydra K (2014) Induction of systemic resistance and defense related enzymes after elicitation of resistance by rhizobacteria and silicon application against Ralstonia solanacearum in tomato (Solanum lycopersicum). Crop Prot 57:1–7

    Article  CAS  Google Scholar 

  • Kurabachew H, Stahl F, Wydra K (2013) Global gene expression of rhizobacteria-silicon mediated induced systemic resistance in tomato (Solanum lycopersicum) against Ralstonia solanacearum. Physiol Mol Plant Pathol 84:44–52

    Article  CAS  Google Scholar 

  • Liang YC, Sun WC, Si J, Römheld V (2005a) Effects of foliar- and root-applied silicon on the enhancement of induced resistance to powdery mildew in Cucumis sativus. Plant Pathol 54:678–685

    Article  CAS  Google Scholar 

  • Liang Y, Wong JWC, Wei L (2005b) Silicon-mediated enhancement of cadmium tolerance in maize (Zea mays L.) grown in cadmium contaminated soil. Chemosphere 58:475–483

    Article  CAS  PubMed  Google Scholar 

  • Louws FJ, Wilson M, Campbell HL, Cuppels DA, Jones JB, Shoemaker PB, Sahin F, Miller SA (2001) Field control of bacterial spot and bacterial speck of tomato using a plant activator. Plant Dis 85:481–488

    Article  CAS  Google Scholar 

  • Ma JF (2004) Role of silicon in enhancing the resistance of plants to biotic and abiotic stresses. Soil Sci Plant Nutr 50:11–18

    Article  CAS  Google Scholar 

  • Ma JF, Yamaji N (2006) Silicon uptake and accumulation in higher plants. Trends Plant Sci 11:392–397

    Article  CAS  PubMed  Google Scholar 

  • Ma JF, Miyake Y, Takahashi E (2001) Silicon as a beneficial element for crop plants. In: Datnoff LE, Snyder GH, Korndorfer GH (eds) Silicon in agriculture. Elsevier Science, Amsterdam, pp 17–39

    Chapter  Google Scholar 

  • Maleck K, Levine A, Eulgem T, Morgan A, Schmid J, Lawton KA (2000) The transcriptome of Arabidopsis thaliana during systemic acquired resistance. Nat Genet 26:403–410

    Article  CAS  PubMed  Google Scholar 

  • Mitani N, Ma JF (2005) Uptake system of silicon in different plant species. J Exp Bot 56:1255–1261

    Article  CAS  PubMed  Google Scholar 

  • Pegg K, Moffett M (1971) Host range of the ginger strain of Pseudomonas solanacearum in Queensland. Aust J Exp Agric Anim Husb 11:696–698

    Article  Google Scholar 

  • Pozo MJ, Van Loon LC, Pieterse CMJ (2004) Jasmonates-signals in plant-microbe interactions. J Plant Growth Regul 23:211–222

    CAS  Google Scholar 

  • Rémus-Borel W, Menzies JG, Bélanger RR (2005) Silicon induces antifungal compounds in powdery mildew-infected wheat. Physiol Mol Plant Pathol 66:108–115

    Article  Google Scholar 

  • Rodrigues FA, Vale FXR, Korndorfer GH, Prabhu AS, Datnoff LE, Oliveira AMA, Zambolim L (2003) Influence of silicon on sheath blight of rice in Brazil. Crop Prot 22:23–29

    Article  CAS  Google Scholar 

  • Romero AM, Kousik CS, Ritchie DF (2001) Resistance to bacterial spot in bell pepper induced by acibenzolar-S-methyl. Plant Dis 85:189–194

    Article  Google Scholar 

  • Ross AF (1961) Systemic acquired resistance induced by localized virus infections in plants. Virology 14:340–358

    Article  CAS  PubMed  Google Scholar 

  • Saddler GS (2005) Management of bacterial wilt disease. In: Allen C, Prior P, Hayward AC (eds) Bacterial wilt disease and Ralstonia solanacearum species complex. The American Phytopathological Society, St. Paul, MN, pp 121–132

    Google Scholar 

  • Savant NK, Korndörfer GH, Datnoff LE, Snyder GH (1999) Silicon nutrition and sugarcane production: a review. J Plant Nutr 22:1853–1903

    Article  CAS  Google Scholar 

  • Schenk PM, Kazan K, Wilson I, Anderson JP, Richmond T, Somerville SC (2000) Coordinated plant defense responses in Arabidopsis revealed by microarray analysis. Proc Natl Acad Sci U S A 97:11655–11660

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Schneider S, Ullrich WR (1994) Differential induction of resistance and enhanced enzyme activities in cucumber and tobacco caused by treatment with various abiotic and biotic inducers. Physiol Mol Plant Pathol 45:291–304

    Article  CAS  Google Scholar 

  • Seebold KW, Kucharek TA, Datnoff LE, Correa-Victoria FJ, Kucharek TA, Snyder GH (2000) Effect of silicon rate and host resistance on blast, scald, and yield of upland rice. Plant Dis 84:871–876

    Article  Google Scholar 

  • Swanson JK, Yao J, Tans-Kersten J, Allen C (2005) Behaviour of Ralstonia solanacearum race 3 biovar 2 during latent and active infection of geranium. Phytopathology 95:136–143

    Article  PubMed  Google Scholar 

  • Van Hulten M, Pelser M, Van Loon LC, Pieterse CMJ, Ton J (2006) Costs and benefits of priming for defense in Arabidopsis. Proc Natl Acad Sci U S A 113:5602–5607

    Article  Google Scholar 

  • Van Loon LC, Glick GR (2004) Increased plant fitness by rhizobacteria. In: Sandermann H (ed) Molecular ecotoxicology of plants. Springer, Berlin, pp 177–205

    Chapter  Google Scholar 

  • Van Loon LC, Bakker PAHM, Pieterse CMJ (1998) Systemic resistance induced by rhizosphere bacteria. Annu Rev Phytopathol 36:453–483

    Article  PubMed  Google Scholar 

  • Van Loon LC, Geraats BPJ, Linthorst HJM (2006a) Ethylene as a modulator of disease resistance in plants. Trends Plant Sci 11:184–191

    Article  PubMed  Google Scholar 

  • Van Loon LC, Rep M, Pieterse CMJ (2006b) Significance of inducible defense related proteins in infected plants. Annu Rev Phytopathol 44:135–162

    Article  PubMed  Google Scholar 

  • Van Wees SCM, Van der Ent S, Pieterse CMJ (2008) Plant immune responses triggered by beneficial microbes. Curr Opin Plant Biol 11:443–448

    Article  PubMed  Google Scholar 

  • Wang JF, Lin CH (2005) Colonizing capacity of Ralstonia solanacearum tomato strains differing in aggressiveness on tomato and weeds. In: Allen C, Prior P, Hayward AC (eds) Bacterial wilt disease and the Ralstonia solanacearum species complex. The American Phytopathological Society, St. Paul, MN, pp 73–79

    Google Scholar 

  • Wicker E, Grassart L, Coranson-Beaudu R, Mian D, Guilbaud C, Fegan M (2007) Ralstonia solanacearum strains from Martinique (French West Indies) exhibiting a new pathogenic potential. Appl Environ Microbiol 71:6790–6801

    Article  Google Scholar 

  • Yabuuchi E, Kosako Y, Yano I, Hotta H, Nishiuchi Y (1995) Transfer of two Burkholderia and an Alcaligenes species to Ralstonia gen. Nov.: proposal of Ralstonia pickettii (Ralston, Palleroni and Doudoroff 1973) comb. Nov., Ralstonia solanacearum (Smith 1896) comb. Nov. and Ralstonia eutropha (Davis 1969) comb. Nov. Microbiol Immunol 39:897–904

    Article  CAS  PubMed  Google Scholar 

  • Yang YF, Liang YC, Lou YS, Sun WC (2003) Influences of silicon on peroxidase, superoxide dismutase activity and lignin content in leaves of wheat Tritium aestivum L. and its relation to resistance to powdery mildew. Sci Agric Sin 36:813–817

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henok Kurabachew .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kurabachew, H. (2015). The Impact of Silicon Amendment on Suppression of Bacterial Wilt Caused by Ralstonia solanacearum in Solanaceous Crops. In: Meghvansi, M., Varma, A. (eds) Organic Amendments and Soil Suppressiveness in Plant Disease Management. Soil Biology, vol 46. Springer, Cham. https://doi.org/10.1007/978-3-319-23075-7_19

Download citation

Publish with us

Policies and ethics