Skip to main content

Bio-intensive Management of Fungal Diseases of Fruits and Vegetables Utilizing Compost and Compost Teas

  • Chapter
Organic Amendments and Soil Suppressiveness in Plant Disease Management

Part of the book series: Soil Biology ((SOILBIOL,volume 46))

Abstract

Compost has been used in agriculture and horticulture for a long time as a fertilizer or a soil conditioner. However, in recent years the focus has been placed on the disease-suppressive effects of the compost and its aqueous extracts. Several composts and their water extracts have been investigated on different diseases especially on those caused by soilborne pathogens throughout the world. Conversely, an increase in disease incidence has also been reported. Therefore, it remains the fact that compost application can suppress the diseases in positive, neutral, and even negative manner. This makes the utilization of compost intricate as a robust prevalent approach to mitigate plant diseases. The mechanisms involved in the disease suppression are not fully known. The disease-suppressive effect of the compost could be attributed to various mechanisms including the presence of antagonistic microbes and unidentified chemical factors in them, antibiosis, and induction of systemic resistance in plants and improvement of the overall health of plants. This chapter focuses on the influence of compost and compost teas on the suppression of foliar and soilborne fungal diseases of fruits and vegetables. The factors limiting and enhancing their efficacy will also be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Achimu P, Schlösser P (1992) Control of Plasmopara viticola with compost filtrates. Med Fac Landbouww Rijksuniv Gent 56:171–178

    Google Scholar 

  • Al-Mughrabi KI (2006) Antibiosis ability of aerobic compost tea against foliar and tuber potato diseases. Biotechnology 5(1):69–74

    Article  Google Scholar 

  • Al-Mughrabi KI (2007) Suppression of Phytophthora infestans in potatoes by foliar application of food nutrients and compost tea. Aust J Basic Appl Sci 1(4):785–792

    Google Scholar 

  • Al-Mughrabi KI, Berthélémé C, Livingston T, Burgoyne A, Poirier R, Vikram A (2008) Aerobic compost tea, compost and a combination of both reduce the severity of common scab (Streptomyces scabiei) on potato tubers. J Plant Sci 3(2):168–175

    Article  Google Scholar 

  • Andrews JH (1993) Compost extracts and the biological control of foliar plant disease. Grant Report Project # LNC 91-31 Madison, Wisconsin

    Google Scholar 

  • Blakeman JP (1975) Germination of Botrytis cineria conidia in vitro in relation to nutrient conditions on leaf surfaces. Trans Br Mycol Soc 65:239–247

    Article  Google Scholar 

  • Blum LEB, Rodríguez-Kábana R (2004) Effect of soil organic amendments on sclerotial germination, mycelial growth, and Sclerotium rolfsii-induced diseases. Fitopatol Bras 29:066–074

    Article  Google Scholar 

  • Boehm MJ, Hoitink HAJ (1992) Sustenance of microbial activity in potting mixes and its impact on severity of Pythium root rot of poinsettia. Phytopathology 82:259–264

    Article  Google Scholar 

  • Bollen GJ (1993) Factors involved in inactivation of plant pathogens during composting of crop residues. In: Hoitink HAJ, Keener HM (eds) Science and engineering of composting design, environmental microbiological and utilization aspects. Renaissance Publications, Worthington, OH, pp 301–318

    Google Scholar 

  • Borrero C, Castillo C, Ordovás J, Tello JC, Avilés M (2002) Composted cork as suppressive substrate to Verticilium wilt of tomato. In: Michel FC Jr, Rynk RF, Hoitink HAJ (eds) Proceedings of 2002 International Symposium Composting and Compost Utilization, Columbus, OH, 6–8 May 2002, pp 1342–1352

    Google Scholar 

  • Borrero C, Trillas MI, Ordovás J, Tello JC, Avilés M (2004) Predictive factors for the suppression of fusarium wilt of tomato in plant growth media. Phytopathology 94:1094–1101

    Article  PubMed  Google Scholar 

  • Borrero C, Trillas MI, Avilés M (2009) Carnation Fusarium wilt suppression in four composts. Eur J Plant Pathol 123:425–433

    Article  Google Scholar 

  • Brinton WF (1995) The control of plant pathogenic fungi by use of compost teas. Biodynamics 197:12–15

    Google Scholar 

  • Budde K, Weltzien HC (1988) PhytosanitareWirkungen von Kompostextrakten und substratenimErreger- System Gerste –EchterMehltau (Erysiphegraminis DC f. sp. horder Marchai). Rijksuniv Gent 53:363–371

    Google Scholar 

  • Chung YR, Hoitink HAJ, Dick WA, Herr LJ (1998) Effects of organic matter decomposition level and cellulose amendment on inoculum potential of Rhizoctonia solani in hardwood bark media. Phytopathology 78:836–840

    Article  Google Scholar 

  • Claudia C, McLean M, Berjak P (1997) In vitro studies on the potential for biological control of Aspergillus flavus and Fusarium moniliforme by Trichoderma spp. Mycopathologia 137:115–124

    Article  Google Scholar 

  • Craft M, Nelson EB (1996) Microbial properties of composts that suppress damping-off and root rot of creeping Bentgrass caused by Pythium graminicola. Appl Environ Microbiol 62(5):1550–1557

    PubMed Central  CAS  PubMed  Google Scholar 

  • Cronin MJ, Yohalem DS, Harris RF, Andrews JH (1996) Putative mechanism and dynamics of inhibition of the apple scab pathogen (Venturia inaequalis) by compost tea. Soil Biol Biochem 28:1241–1249

    Article  CAS  Google Scholar 

  • Cotxarrera L, Trillas-Gay MI, Steinberg C, Alabouvette C (2002) Use of sewage sludge compost and Trichoderma asperellum isolates to suppress fusarium wilt of tomato. Soil Biol Biochem 34:467–476

    Article  CAS  Google Scholar 

  • Danon M, Zmora-Nahum S, Chen Y, Hadar Y (2007) Prolonged compost curing reduces suppression of Sclerotium rolfsii. Soil Biol Biochem 39:1936–1946

    Article  CAS  Google Scholar 

  • De Meyer G, Bigrimana G, Elad Y, Hofte M (1998) Induced systemic resistance in T. harzianum T396 biocontrol of Botrytis cinerea. Eur J Plant Pathol 104:279–286

    Article  Google Scholar 

  • Diab HG, Hu S, Benson DM (2003) Suppression of Rhizoctonia solani on Impatiens by enhanced microbial activity in composted swine waste-amended potting mixes. Phytopathology 93(9):1115–1123

    Article  CAS  PubMed  Google Scholar 

  • Diánez F, Santos M, Boix A, de Cara M, Trillas I, Avilés M, Tello JC (2006) Grape marc compost tea suppressiveness to plant pathogenic fungi: the role of siderophores. Compost Sci Util 14(1):48–53

    Article  Google Scholar 

  • Dionne A, Tweddell RJ, Antoun H, Avis TJ (2012) Effect of non-aerated compost teas on damping-off pathogens of tomato. Can J Plant Pathol 34(1):51–57

    Article  Google Scholar 

  • Dukare AS, Prasanna R, Dubey SC, Nain L, Chaudhary V, Singh R, Saxena AK (2011) Evaluating novel microbe amended composts as biocontrol agents in tomato. Crop Prot 30:436–442

    Article  Google Scholar 

  • Elad Y, Shtienberg D (1994) Effect of compost water extracts on grey mould (Botrytis cinerea). Crop Prot 2:109–114

    Article  Google Scholar 

  • El-Masry MH, Khalil AI, Hassouna MS, Ibrahim HAH (2002) In situ and in vitro suppressive effect of agricultural composts and their water extracts on some phytopathogenic fungi. World J Microbiol Biotechnol 18:551–558

    Article  CAS  Google Scholar 

  • Erhart E, Burian K, Hartl W, Stich K (1999) Suppression of Pythium ultimum by biowaste composts in relation to compost microbial biomass, activity and content of phenolic compounds. J Phytopathol 147:299–305

    Article  CAS  Google Scholar 

  • Farrell JB (1993) Fecal pathogen control during composting. In: Hoitink HAJ, Keener HM (eds) Science and engineering of composting: design, environmental, microbiological and utilization aspects. Renaissance Publications, Worthington, OH, pp 282–300

    Google Scholar 

  • Fernández E, Segarra G, Trillas MI (2014) Physiological effects of the induction of resistance by compost or Trichoderma asperellum strain T34 against Botrytis cinerea in tomato. Biol Control 78:77–85

    Article  Google Scholar 

  • Granatstein D (1999) Suppressing plant diseases with compost. The compost connection for western agriculture, No. 8, January 1999

    Google Scholar 

  • Griffin TS, Hutchinson M (2007) Compost maturity effects on nitrogen and carbon mineralization and plant growth. Compost Sci Util 15:228–236

    Article  CAS  Google Scholar 

  • Goldstein J (1998) Compost suppresses disease in the lab and on the fields. BioCycle 39:62–64

    Google Scholar 

  • Gorodecki B, Hadar Y (1990) Suppression of Rhizoctonia solani and Sclerotium rolfsii in container media containing composted separated cattle manure and composted grape marc. Crop Prot 9:271–274

    Article  Google Scholar 

  • Hadar Y, Mandelbaum R (1986) Suppression of Pythium aphanidermatum damping-off in container media containing composted liquorice roots. Crop Prot 5:88–92

    Article  Google Scholar 

  • Haggag WM, Saber MSM (2007) Suppression of early blight on tomato and purple blight on onion by foliar sprays of aerated and non-aerated compost teas. J Food Agric Environ 5:302–309

    Google Scholar 

  • Harman GE, Hayes CK, Lorito M, Broadway RM, Di Pietro A, Peterbauer C, Tronsmo A (1993) Chitinolytic enzymes of Trichoderma harzianum: purification of chitobiosidase and endochitinase. Phytopathology 83:313–318

    Article  CAS  Google Scholar 

  • Himanen M, Hänninen K (2009) Effect of commercial mineral-based additives on composting and compost quality. Waste Manag 29:2265–2273

    Article  CAS  PubMed  Google Scholar 

  • Hmouni A, Mouria A, Douira A (2006) Biological control of tomato grey mould with compost water extracts, Trichoderma sp. and Gliocladium sp. Phytopathol Mediterr 45:110–116

    Google Scholar 

  • Hoitink HAJ, VanDoren DM, Schmitthenner AF (1977) Suppression of Phytophthora cinnamomi in a composted hardwood bark potting medium. Phytopathology 67:561–565

    Article  Google Scholar 

  • Hoitink HAJ, Inbar Y, Boehm MJ (1991) Status of compost-amended potting mixes naturally suppressive to soilborne diseases of floricultural crops. Plant Dis 75:869–873

    Article  Google Scholar 

  • Hoitink HAJ, Boehm MJ, Hadar Y (1993) Mechanism of suppression of soil borne plant pathogen in compost-amended substrates. In: Hoitink HAJ, Keener HM (eds) Science and engineering of composting: design, environmental, microbiological and utilization aspects. Renaissance Publication, Worthington, OH, pp 601–621

    Google Scholar 

  • Hoitink HAJ, Boehm MJ (1999) Biocontrol within the context of soil microbial communities: a substrate-dependent phenomenon. Annu Rev Phytopathol 37:427–446

    Article  CAS  PubMed  Google Scholar 

  • Inbar Y, Boehm MJ, Hoitink HAJ (1991) Hydrolysis of fluorescein diacetate in sphagnum peat container media for predicting suppressiveness to damping-off caused by Pythium ultimum. Soil Biol Biochem 23:479–483

    Article  CAS  Google Scholar 

  • Inbar Y, Chen Y, Hoitink HAJ (1993) Properties for establishing standards for utilization of composts in container media. In: Hoitink HAJ, Keener HM (eds) Science and engineering of composting: design, environmental, microbiological and utilization aspects. Renaissance Publications, Worthington, OH, pp 668–694

    Google Scholar 

  • Ingham ER (2000a) Brewing compost tea. Kitchen Gard 29:16–19

    Google Scholar 

  • Ingham ER (2000b) The compost tea brewing manual. Unisun Communications, Corvallis, OR

    Google Scholar 

  • Jenana RKBE, Haouala R, Ali M, Triki JJG, Hibar K, Ben M (2009) Composts, compost extracts and bacterial suppressive action on Pythium aphanidermatum in tomato. Pak J Bot 41:315–327

    Google Scholar 

  • Kannangara T, Utkhede RS, Paul JW, Punja ZK (2000) Effects of mesophilic and thermophilic composts on suppression of Fusarium root and stem rot of greenhouse cucumber. Can J Microbiol 46:1021–1028

    Article  CAS  PubMed  Google Scholar 

  • Kazana K, Goulter KC, Way HM, Manners JM (1998) Expression of pathogenesis-related peroxidase of Stylosanthes humilis in transgenic tobacco and canola and its effect on disease development. Plant Sci 136:207–217

    Article  Google Scholar 

  • Kavroulakis N, Ehaliotis C, Ntougias S, Zervakis GI, Papadopoulou KK (2005) Local and systemic resistance against fungal pathogens of tomato plants elicited by a compost deriving from agricultural residues. Physiol Mol Plant Pathol 66:163–174

    Article  Google Scholar 

  • Kerkeni A, Daami-Remadi M, Tarchoun N, Khedher MB (2007) In vitro assessment of the antifungal activity of several compost extracts obtained from composted animal manure mixtures. Int J Agric Res 2(9):786–794

    Article  Google Scholar 

  • Ketterer N (1990) Studies on the effect of a compost extraction on the leaf infections of potatoes and tomatoes by Phytophthora infestans as well as on the infection of grape vines by Plasmopara viticola, Pseudopeziza tracheiphila and Uncinula necator. PhD Thesis, Bonn

    Google Scholar 

  • Ketterer N, Schwager L (1992) The effect of compost extracts on disease attack and phyllosphere population in bush bean and tomato leaves. Mededelingen van de Faculteit Landbouwwetenschappen Universiteit Gent 57 (2–3 Part A–B):411–421

    Google Scholar 

  • Ketterer N, Fisher B, Weltzien H (1992) Biological control of Botrytis cinerea on grapevine by compost tea and their microorganisms in pure culture. In: Verhoeff K, Malatharakis N, Williamson B (eds) Recent advances in Botrytis research. Proceedings 10th international Botrytis symposium, Heraklion, Crete, 5–10 April 1992. Pudoc Scientific Publishers, Wageningen, pp 179–186

    Google Scholar 

  • Khan J, Ooka JJ, Miller SA, Madden LV, Hoitink HAJ (2004) Systemic resistance induced by Trichoderma hamatum 382 in cucumber against Phytophthora crown rot and leaf blight. Plant Dis 88(3):280–286

    Article  Google Scholar 

  • Kim KD, Nemec S, Musson G (1997) Effects of composts and soil amendments on soil microflora and Phytophthora root and crown rot of bell paper. Crop Prot 16(2):165–172

    Article  Google Scholar 

  • Kloepper JW, Rodriguez-Ubana R, Zehnder GW, Murphy JF, Sikora E, Fernandez C (1999) Plant root-bacterial interactions in biological control of soilborne diseases and potential extension to systemic and foliar diseases. Australas Plant Pathol 28:21–26

    Article  Google Scholar 

  • Koné SB, Dionne A, Tweddell RJ, Antoun H, Avis TJ (2010) Suppressive effect of non-aerated compost teas on foliar fungal pathogens of tomato. Biol Control 52:167–173

    Article  Google Scholar 

  • Laha GS, Singh RP, Verma JP (1992) Biological control of Rhizoctonia solani in cotton by fluorescent Pseudomonas. Indian Phytopathol 45(4):417–415

    Google Scholar 

  • Lamondia JA, Gent MPN, Ferrandino FJ, Elmer WH, Stoner KA (1998) The effect of compost amendment or straw mulch on potato early dying disease development and yield. Plant Dis 83(4):661–666

    Google Scholar 

  • Liu L, Kloepper JW, Tuzun S (1995) Induction of systemic resistance in cucumber against Fusarium wilting plant growth-promoting rhizobacteria. Phytopathology 85:695–8

    Article  Google Scholar 

  • Lorito M, Peterbauer C, Hayes CK, Harman GE (1994) Synergistic interaction between fungal cell wall degrading enzymes and different antifungal compounds enhances inhibition of spore germination. Microbiology 140:623–629

    Article  CAS  PubMed  Google Scholar 

  • Maurhfiofer M, Flace C, Meuwly P, Defagu G (1994) Induction of systemic resistance in cucumber by Pseudomonas syringae pv. Syringae. Physiol Mol Plant Pathol 38:223–235

    Google Scholar 

  • McQuilken MP, Whipps JM, Lynch JM (1994) Effects of water extract of a composted manure-straw mixture on the plant pathogen Botrytis cinerea. World J Microbiol Biotechnol 10:20–26

    Article  PubMed  Google Scholar 

  • Merrill R, McKeon J (2001) Apparatus design and experimental protocol for organic compost teas. Org Farm Res Found Inf Bull 9:9–15

    Google Scholar 

  • Metacalf and Eddy (1991) Wastewater engineering treatment, disposal and reuse, 3rd edn. Wiley, New York

    Google Scholar 

  • Naidu Y, Sariah M, Jugah K, Siddiqui Y (2010) Microbial starter for the enhancement of biological activity of compos tea. Int Agric Biol 12:51–56

    Google Scholar 

  • Naidu Y, Meon S, Siddiqui Y (2012) In vitro and in vivo evaluation of microbial-enriched compost tea on the development of powdery mildew on melon. Biol Control 57(6):827–836

    Google Scholar 

  • Naidu Y, Meon S, Siddiqui Y (2013) Foliar application of microbial-enriched compost tea enhances growth, yield and quality of muskmelon (Cucumis melo L.) cultivated under fertigation system. Sci Hortic 159:33–40

    Article  Google Scholar 

  • Nelson EB, Kuter GA, Hoitink HAJ (1983) Effects of fungal antagonists and compost age on suppression of rhizoctonia damping-off in container media amended with composted hardwood bark. Phytopathology 73:1457–1462

    Article  Google Scholar 

  • Noble R, Roberts SJ (2004) Eradication of plant pathogens and nematodes during composting: a review. Plant Pathol 53:548–568

    Article  Google Scholar 

  • NOSB (2006) Formal recommendation by the NOSB to the National Organic Program. 9 Nov 2006. National Organic Standards Board. Available via http://www.ams.usda.gov/NOSB/FinalRecommendations/Oct06/NOSBFNLCompostGuidanceCombined10192006.pdf

  • Ntougias S, Papadopoulou KK, Zervakis GI, Kavroulakis N, Ehaliotis C (2008) Suppression of soil-borne pathogens of tomato by composts derived from agro-industrial wastes abundant in Mediterranean regions. Biol Fertil Soils 44:1081–1090

    Article  Google Scholar 

  • Pan I, Dam B, Sen SK (2012) Composting of common organic wastes using microbial inoculants. Indian J Biotechnol 2:127–134

    Google Scholar 

  • Pharand B, Carisse O, Benhamou N (2002) Cytological aspects of compost-mediated induced resistance against Fusarium crown and root rot in tomato. Phytopathology 92:424–438

    Article  PubMed  Google Scholar 

  • Postma J, Kok CJ (2003) Effect of compost application on the soil microflora. In: Proceedings, applying compost – benefits and needs, Brussel, pp 157–161

    Google Scholar 

  • Pscheidt J, Wittig H (1996) Fruit and ornamental disease management testing program. Extension plant pathology. O.S.U., Corvallis, OR. Available via http://www.science.oregonstate.edu/bpp/Plant_Clinic/Fungicidebooklet/personnel.htm

  • Raaijmakers JM, Leeman M, Van Oorschot MMP, Van der Sluis I, Schippers B, Bakker PAHM (1995) Dose-response relationships in biological control of Fusarium wilt of radish by Pseudomonas spp. Phytopathology 85:1075–1081

    Article  Google Scholar 

  • Ringer CE, Millner PD, Teerlinck LM, Lyman BW (1997) Suppression of seedling damping-off disease in potting mix containing animal manure composts. Compost Sci Util 5(2):6–14

    Article  Google Scholar 

  • Reuveni R, Raviv M, Krasnovsky A, Freiman L, Medina S, Bar A, Orion D (2002) Compost induces protection against Fusarium oxysporum in sweet basil. Crop Prot 21:583–587

    Article  Google Scholar 

  • Ryckeboer J (2001) Biowaste and yard waste composts: microbiological and hygienic aspects-suppressiveness to plant diseases. PhD Thesis, Katholieke Universiteit Leuven, Belgium, pp 1–245

    Google Scholar 

  • Saadi I, Laor Y, Medina S, Krassnovsky A, Raviv M (2010) Compost suppressiveness against Fusarium oxysporum was not reduced alter one-year storage under various moisture and temperature conditions. Soil Biol Biochem 42:626–634

    Article  CAS  Google Scholar 

  • Sackenheim R (1993) Untersuchungenuber Wirkungen von wassrigenmikrobilogischaktivenExtraktenauskompostiertensubstraten auf den Befall der weinrebe (Vitis vinifera) mit Plasmopara viticola, Uncinula necator, Botrytis cinerea and Pseudopeziza tracheiphila. Dissertation, Inivesiy of Bonn

    Google Scholar 

  • Samerski C, Weltzien HC (1988a) Studies on the activity and action mechanisms of compost extracts in the pathosystem cucumber powdery mildew Sphaerotheca fuliginea. Mededelingen van de Faculteit Landbouwwetenschappen Universiteit Gent 53 (2 Part A):373–378

    Google Scholar 

  • Samerski C, Weltzien HC (1988b) Investigations on the mode of action of compost extracts in the host-parasite system sugar beet-powdery mildew. J Plant Dis Prot 95:176–181

    Google Scholar 

  • Sang MK, Kim JG, Kim KD (2010) Biocontrol activity and induction of systemic resistance in pepper by compost water extracts against Phytophthora capsici. Phytopathology 100:774–783

    Article  PubMed  Google Scholar 

  • Sang MK, Kim KD (2011) Biocontrol activity and primed systemic resistance by compost water extracts against anthracnoses of pepper and cucumber. Phytopathology 101:732–740

    Article  CAS  PubMed  Google Scholar 

  • Scheuerell SJ, Mahaffee WF (2000) Assessing aerated and non-aerated watery fermented compost and Trichoderma harzianum T-22 for control of powdery mildew of rose in the Willamette Valley, Oregon (Abstract). Phytopathology 90:69

    Google Scholar 

  • Scheuerell SJ, Mahaffee WF (2002) Compost tea: principles and prospects for plant disease control. Compost Sci Util 10:313–318

    Article  Google Scholar 

  • Scheuerell SJ, Mahaffee WF (2004) Compost tea as a container medium drench for suppressing seedling damping-off caused by Pythium ultimum. Phytopathology 94:1156–1163

    Article  PubMed  Google Scholar 

  • Scheuerell SJ, Sullivan DM, Mahaffee WF (2004) Suppression of seedling damping-off caused by Pythium ultimum, P. irregulare, and Rhizoctonia solani in container media amended with a diverse range of Pacific Northwest compost sources. Phytopathology 95:306–315

    Article  Google Scholar 

  • Scheuerell SJ, Mahaffee WF (2006) Variability associated with suppression of gray mold (Botrytis cinerea) on geranium by foliar application of non-aerated and aerated compost teas. Plant Dis 90(9):1201–1208

    Article  Google Scholar 

  • Segarra G, Reis M, Casanova E, Trillas I (2009) Control of powdery mildew (Erysiphe polygoni) in tomato by foliar applications of compost tea. J Plant Pathol 91:683–689

    Google Scholar 

  • Segarra G, Elena G, Trillas I (2013) Systemic resistance against Botrytis cinerea in Arabidopsis triggered by an olive marc compost substrate requires functional SA signalling. Physiol Mol Plant Pathol 82:46–50

    Article  CAS  Google Scholar 

  • Siddiqui Y, Sariah M, Razi I (2008a) Trichoderma-fortified compost extracts for the control of Choanephora wet rot in okra production. Crop Prot 27(3–5):385–390

    Article  Google Scholar 

  • Siddiqui Y, Sariah M, Razi I, Mawardi R, Asgar A (2008b) Bio-efficiency of compost extracts on the wet rot incidence, morphological and physiological growth of okra (Abelmoschus esculentus [(L.) Moench]). Sci Hortic 117(1):9–14

    Article  Google Scholar 

  • Siddiqui Y, Sariah M, Razi I, Mawardi R (2009) Bio-potential of compost tea from agro-waste to suppress Choanephora cucurbitarum L. the causal pathogen of wet rot of okra. Biol Control 49(1):38–44

    Article  Google Scholar 

  • Sticher L, Mauch-Mani B, Metraux JP (1997) Systemic acquired resistance. Phytopathology 35:235–270

    Article  CAS  Google Scholar 

  • Stindt A (1990) Untersuchungen zur wirkung und zu den wirkungmechanism von kompostextraten auf Botrytis cineria Pers. exNocca and Balb an Erdbeeren kopfsalat und boschbohnen. Dissertation, University of Bonn

    Google Scholar 

  • Stoffella PJ, Li YC, Roe NE, Ozores-Hampton M, Graetz DA (1997) Utilization of organic waste composts in vegetable crop production systems. In: Morris RA (ed) Managing soil fertility for intensive vegetable production systems in Asia. Asian Vegetable Research and Development Center, Shanhua

    Google Scholar 

  • Trillas-Gay MI, Hoitink HAJ, Madden LV (1986) Nature of suppression of Fusarium wilt of radish in a container medium amended with composted hardwood bark. Plant Dis 70:1023–1027

    Article  Google Scholar 

  • Trillas MI, Casanova E, Cotxarrera L, Ordovás J, Borrero C, Avilqs M (2006) Composts from agricultural waste and the Trichoderma asperellum strain T-34 suppress Rhizoctonia solani in cucumber seedlings. Biol Control 39:32–38

    Article  Google Scholar 

  • Tuitert G, Szczech M, Bollen GJ (1998) Suppression of Rhizoctonia solani in potting mixtures amended with compost made from organic household waste. Phytopathology 88:764–773

    Article  CAS  PubMed  Google Scholar 

  • UNDP (2003) United Nations Development Programme bureau for development policy MONTREAL PROTOCOL UNIT

    Google Scholar 

  • Urban J, Trankner A (1993) Control of grey mould (Botrytis cinerea) with fermented compost/water extracts. WPRS Bull 16:8–11

    Google Scholar 

  • Wei G, Kloepper J, Tuzun S (1991) Induction of systemic resistance of cucumber to Colletotrichum orbiculare by select strains of plant growth promoting rhizobacteria. Phytopathology 81:1508–1512

    Article  Google Scholar 

  • Welke SE (2004) The effect of compost extract on the yield of strawberries and the severity of Botrytis cinerea. J Sustain Agric 25(1):57–68

    Article  Google Scholar 

  • Weltzien HC, Ketterer N (1986) Control of downy mildew, Plasmopara viticola (de Bary) Berlese et de Toni, on grapevine leaves through water extracts form composted organic wastes. J Phytopathol 116:186–188

    Article  Google Scholar 

  • Weltzien HC (1989) Some effects of composted organic materials on plant health. Agric Ecosyst Environ 27:439–446

    Article  Google Scholar 

  • Weltzien HC (1991) Biocontrol of foliar fungal diseases with compost extracts. In: Andrews JH, Hirano SS (eds) Microbial ecology of leaves. Springer, New York, pp 430–450

    Chapter  Google Scholar 

  • Widmer TL, Graham JH, Mitchell DJ (1998) Composted municipal waste reduces infection of citrus seedlings by Phytophthora nicotianae. Plant Dis 82:683–688

    Article  Google Scholar 

  • Yohalem DS, Harris RF, Andrews JH (1994) Aqueous extracts of spent mushroom substrate for foliar disease control. Compost Sci Util 2:67–74

    Google Scholar 

  • Yohalem DS, Nordheim EV, Andrews JH (1996) The effect of water extracts of spent mushroom compost on apple scab in the field. Phytopathology 86:914–922

    Article  Google Scholar 

  • Yogeva A, Raviv M, Hadar Y, Cohen R, Wolf S, Gil L, Katan J (2010) Induced resistance as a putative component of compost suppressiveness. Biol Control 54:46–51

    Article  Google Scholar 

  • You MP, Sivasithamparam K (1995) Changes in microbial populations of an avocado plantation mulch suppressive to Phytophthora cinnamomi. Appl Soil Ecol 2:33–43

    Article  Google Scholar 

  • Zhang W, Han DY, Dick WA, Davis KR, Hoitink HAJ (1998) Compost and compost water extract-induced systemic acquired resistance in cucumber and Arabidopsis. Phytopathology 88:450–455

    Article  CAS  PubMed  Google Scholar 

  • Zhang W, Dick WA, Hoitink HAJ (1996) Compost-induced systemic acquired resistance in cumber to Pythium root rot and anthracnose. Phytopathology 86:1066–1070

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasmeen Siddiqui .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Siddiqui, Y., Naidu, Y., Ali, A. (2015). Bio-intensive Management of Fungal Diseases of Fruits and Vegetables Utilizing Compost and Compost Teas. In: Meghvansi, M., Varma, A. (eds) Organic Amendments and Soil Suppressiveness in Plant Disease Management. Soil Biology, vol 46. Springer, Cham. https://doi.org/10.1007/978-3-319-23075-7_14

Download citation

Publish with us

Policies and ethics