Skip to main content

Part of the book series: Soil Biology ((SOILBIOL,volume 46))

  • 1810 Accesses

Abstract

There has been an increasing awareness of the importance of soil quality and soil health in sustainable agricultural production and of the role played by the soil microbiota. More recently the impact of rhizobia on soil suppressiveness has been recognised. Unfortunately despite an initial flurry of research in the 1990s, little further exploration has been carried out. Much of this lack of study may be due to (a) the significant reclassification of the rhizobia resulting in lack of clarity in terms, classification and nomenclature of rhizobial strains and (b) the complexity of the interactions between rhizobia, other soil microbes and host and non-host plants. The ability of rhizobia to form symbiotic N-fixing nodules on compatible legume roots is usually mediated by a plasmid pSym which carries nod and nif genes responsible for nodule formation and nitrogen fixation, respectively. The establishment of N-fixing nodules is a complex interactive process during which the plant root and the rhizobia both produce a range factors and compounds. Suppressive effects of rhizobia against fungi, nematodes and parasitic weeds have long been recognised and may be attributed directly to effects of these factors and compounds and/or to direct competition effects or indirectly through improved plant growth and/or induced resistance responses. There is clearly scope to develop optimised rhizobial inoculant strains that could be used to boost crop growth and reduce disease; however, a better understanding of how rhizobia suppress disease will be required.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Antoun H, Bordeleau LM, Gagnon C (1978) Antagonism between Rhizobium meliloti and Fusarium oxysporum with respect to symbiotic effectiveness. Can J Plant Sci 58:75–78

    Article  Google Scholar 

  • Antoun H, Beauchamp CJ, Goussard N, Chabot R, Lalande R (1998) Potential of Rhizobium and Bradyrhizobium species as plant growth promoting rhizobacteria on non-legumes: effect on radishes (Raphanus sativus L.). Plant Soil 204:57–67

    Article  CAS  Google Scholar 

  • Arora NK, Kang SC, Maheshwari DK (2001) Isolation of siderophore-producing strains of Rhizobium meliloti and their biocontrol potential against Macrophomina phaseolina that causes charcoal rot of groundnut. Curr Sci 81:673–677

    Google Scholar 

  • Atlas R, Bartha R (1986) Microbial ecology. Benjamin/Cummings Publishing, California

    Google Scholar 

  • Avis TJ, Gravel V, Antoun H, Tweddell RJ (2008) Multifaceted beneficial effects of rhizosphere microorganisms on plant health and productivity. Soil Biol Biochem 40:1733–1740

    Article  CAS  Google Scholar 

  • Bouraoui M, Abbes Z, Abdi N, Hmissi I, Sifi B (2012) Evaluation of efficient Rhizobium isolates as biological control agents of Orobanche foetida Poir. parasitizing Vicia faba L. minor in Tunisia. Bulgarian J Agric Sci 18:557–564

    Google Scholar 

  • Buonassisi AJ, Copeman RJ, Pepin HS, Eaton GW (1986) Effect of Rhizobium spp on Fusarium solani f. sp.phaseoli. Can J Plant Pathol 8:140–146

    Article  Google Scholar 

  • Carsky RJ, Berner DK, Oyewole BD, Dashiell K, Schulz S (2000) Reduction of Striga hermonthica parasitism on maize using soybean rotation. Int J Pest Manage 46:115–120

    Article  Google Scholar 

  • Catford JG, Staehelin C, Larose G, Piche Y, Vierheilig H (2006) Systemically suppressed isoflavonoids and their stimulating effects on nodulation and mycorrhization in alfalfa split-root systems. Plant Soil 285:257–266

    Article  CAS  Google Scholar 

  • Chen WX, Yan GH, Li JL (1988) Numerical taxonomic study of fast-growing soybean Rhizobia and a proposal that Rhizobium fredii be assigned to Sinorhizobium gen. nov. Int J Syst Bacteriol 38:392–397

    Article  Google Scholar 

  • Dakora FD (2003) Defining new roles for plant and rhizobial molecules in sole and mixed plant cultures involving symbiotic legumes. New Phytol 158:39–49

    Article  CAS  Google Scholar 

  • Dakora FD, Phillips DA (1996) Diverse functions of isoflavonoids in legumes transcend anti-microbial definitions of phytoalexins. Physiol Mol Plant Pathol 49:1–20

    Article  CAS  Google Scholar 

  • Dakora FD, Joseph CM, Phillips DA (1993) Common bean root exudates contain elevated levels of daidzein and coumestrol in response to Rhizobium inoculation. Mol Plant-Microbe Interact 6:665–668

    Article  CAS  Google Scholar 

  • Dixon RA, Lamb CJ (1990) Molecular communication in interactions between plants and microbial pathogens. Annu Rev Plant Physiol Plant Mol Biol 41:339–367

    Article  CAS  Google Scholar 

  • Ehteshamulhaque S, Ghaffar A (1993) Use of rhizobia in the control of root-rot diseases of sunflower, okra, soybean and mungbean. J Phytopathol 138:157–163

    Article  Google Scholar 

  • Elbadry M, Taha RM, Eldougdoug KA, Gamal-Eldin H (2006) Induction of systemic resistance in faba bean (Vicia faba L.) to bean yellow mosaic potyvirus (BYMV) via seed bacterization with plant growth promoting rhizobacteria. J Plant Dis Protect 113:247–251

    Google Scholar 

  • Fikri-Benbrahim H, Berrada K (2014) Taxonomy of the Rhizobia: current perspectives. Br Microbiol Res J 4:616–639

    Article  Google Scholar 

  • Frank B (1889) Uber die Pilzsymbiose der Leguminosen. Ber Deut Bot Ges 7:332–346

    Google Scholar 

  • Gage DJ (2004) Infection and invasion of roots by symbiotic, nitrogen-fixing rhizobia during nodulation of temperate legumes. Microbiol Mol Biol Rev 68:280–286

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Griffiths BS, Ball BC, Daniell TJ, Hallett PD, Neilson R, Wheatley RE, Osler G, Bohanec M (2010) Integrating soil quality changes to arable agricultural systems following organic matter addition, or adoption of a ley-arable rotation. Appl Soil Ecol 46:43–53

    Article  Google Scholar 

  • Hamdan H, Weller DM, Thomashow LS (1991) Relative importance of fluorescent siderophores and other factors in biological-control of Gaeumannomyces graminis var Tritici by Pseudomonas fluorescens 2–79 and m4-80r. Appl Environ Microbiol 57:3270–3277

    PubMed Central  CAS  PubMed  Google Scholar 

  • Huang HC, Erickson RS, Hsieh TF (2007) Control of bacterial wilt of bean (Curtobacterium flaccumfaciens pv. flaccumfaciens) by seed treatment with Rhizobium leguminosarum. Crop Prot 26:1055–1061

    Article  Google Scholar 

  • Kape R, Parniske M, Brandt S, Werner D (1992) Isoliquiritigenin, a strong nod gene-inducing and glyceollin resistance-inducing flavonoid from soybean root exudate. Appl Environ Microbiol 58:1705–1710

    PubMed Central  CAS  PubMed  Google Scholar 

  • Khaosaad T, Staehelin C, Steinkellner S, Hage-Ahmed K, Antonio Ocampo J, Manuel Garcia-Garrido J, Vierheilig H (2010) The Rhizobium sp. strain NGR234 systemically suppresses arbuscular mycorrhizal root colonization in a split-root system of barley (Hordeum vulgare). Physiol Plant 140:238–245

    CAS  PubMed  Google Scholar 

  • Klein E, Ofek M, Katan J, Minz D, Gamliel A (2013) Soil suppressiveness to fusarium disease: shifts in root microbiome associated with reduction of pathogen root colonization. Phytopathology 103:23–33

    Article  PubMed  Google Scholar 

  • Laranjo M, Alexandre A, Oliveira S (2014) Legume growth-promoting rhizobia: an overview on the Mesorhizobium genus. Microbiol Res 169:2–17

    Article  PubMed  Google Scholar 

  • Matiru VN, Dakora FD (2005) The rhizosphere signal molecule lumichrome alters seedling development in both legumes and cereals. New Phytol 166:439–444

    Article  CAS  PubMed  Google Scholar 

  • Nautiyal CS, Chauhan PS, Bhatia C (2010) Changes in soil physicochemical properties and microbial functional diversity due to 14 years of conversion of grassland to organic agriculture in semi-arid agroecosystem. Soil Tillage Res 109:55–60

    Article  Google Scholar 

  • Parniske M, Ahlborn B, Werner D (1991) Isoflavonoid-inducible resistance to the phytoalexin glyceollin in soybean rhizobia. J Bacteriol 173:3432–3439

    PubMed Central  CAS  PubMed  Google Scholar 

  • Savoure A, Magyar Z, Pierre M, Brown S, Schultze M, Dudits D, Kondorosi A, Kondorosi E (1994) Activation of the cell-cycle machinery and the isoflavonoid biosynthesis pathway by active Rhizobium meliloti nod signal molecules in Medicago microcallus suspensions. EMBO J 13:1093–1102

    PubMed Central  CAS  PubMed  Google Scholar 

  • Shiraishi A, Matsushita N, Hougetsu T (2010) Nodulation in black locust by the Gammaproteobacteria Pseudomonas sp and the Betaproteobacteria Burkholderia sp. Syst Appl Microbiol 33:269–274

    Article  CAS  PubMed  Google Scholar 

  • Souleimanov A, Prithiviraj B, Smith DL (2002) The major Nod factor of Bradyrhizobium japonicum promotes early growth of soybean and corn. J Exp Bot 53:1929–1934

    Article  CAS  PubMed  Google Scholar 

  • Sturz AV, Christie BR (2003) Beneficial microbial allelopathies in the root zone: the management of soil quality and plant disease with rhizobacteria. Soil Till Res 72:107–123

    Article  Google Scholar 

  • Tu JC (1979) Evidence of differential tolerance among some root-rot fungi to rhizobial parasitism in vitro. Physiol Plant Pathol 14:171–8

    Article  Google Scholar 

  • Velazquez E, Peix A et al (2005) The coexistence of symbiosis and pathogenicity-determining genes in Rhizobium rhizogenes strains enables them to induce nodules and tumors or hairy roots in plants. Mol Plant-Microbe Interact 18:1325–1332

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Li X, Zhang J, Yao T, Wei D, Wang Y, Wang J (2012) Effect of root exudates on beneficial microorganisms-evidence from a continuous soybean monoculture. Plant Ecol 213:1883–1892

    Article  Google Scholar 

  • Weir BS (2012) The current taxonomy of rhizobia. NZ Rhizobia website. http://www.rhizobia.co.nz/taxonomy/rhizobia. Last updated 10 Apr 2012

  • Weller DM, Raaijmakers JM, Gardener BBM, Thomashow LS (2002) Microbial populations responsible for specific soil suppressiveness to plant pathogens. Annu Rev Phytopathol 40:309–18

    Article  CAS  PubMed  Google Scholar 

  • Yanni YG, Rizk RY et al (2001) The beneficial plant growth-promoting association of Rhizobium leguminosarum bv. Trifolii with rice roots. Aust J Plant Physiol 28:845–870

    CAS  Google Scholar 

  • Yin B, Valinsky L, Gao XB, Becker JO, Borneman J (2003) Bacterial rRNA genes associated with soil suppressiveness against the plant-parasitic nematode Heterodera schachtii. Appl Environ Microbiol 69:1573–1580

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Young JM, Kuykendall LD, Martinez-Romero E, Kerr A, Sawada H (2001) A revision of Rhizobium Frank 1889, with an emended description of the genus, and the inclusion of all species of Agrobacterium Conn 1942 and Allorhizobium undicola de Lajudie et al. 1998 as new combinations: Rhizobium radiobacter, R. rhizogenes, R. rubi, R. undicola and R. vitis. Int J Syst Evol Microbiol 51:89–103

    Article  CAS  PubMed  Google Scholar 

  • Zhu Y, Shi F, Tian J, Liu J, Chen S, Xiang M, Liu X (2013) Effect of soybean monoculture on the bacterial communities associated with cysts of Heterodera glycines. J Nematol 45:228–235

    PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kim Reilly .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Reilly, K. (2015). Interaction of Rhizobia with Soil Suppressiveness Factors. In: Meghvansi, M., Varma, A. (eds) Organic Amendments and Soil Suppressiveness in Plant Disease Management. Soil Biology, vol 46. Springer, Cham. https://doi.org/10.1007/978-3-319-23075-7_10

Download citation

Publish with us

Policies and ethics