Skip to main content
  • 539 Accesses

Abstract

This chapter presents in detail how digital microfluidic biochips work, and introduces the architecture model we use in the book. Digital microfluidic biochips are organized as an array of electrodes, each of which can hold one droplet, and move the droplets of fluid using electrokinetics. We present the key ideas behind electrowetting-on-dielectric, the fluid propulsion method used in these biochips. We discuss the basic microfluidic operations, such as transport, splitting, dispensing, mixing, and detection, focusing on the reconfigurable operations, which are characteristic to droplet-based biochips. The reconfigurable operations are typically performed inside “virtual modules”, which are created by grouping adjacent cells. During module-based operation execution, all cells inside the module are considered occupied, although the droplet uses only one cell at a time, which is inefficient. Therefore, we introduce a new, “routing-based”, model of operation execution and propose an analytical method for determining the completion time of an operation on any given route. The chapter also presents the typical faults affecting digital microfluidic biochips and the fault models considered in this book, as well as a detailed discussion of how these faults can affect the operation execution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Electrode pitch size = 1.5 mm, gap spacing = 0.3 mm, average linear velocity = 20 cm/s.

References

  1. Chakrabarty, K., Zeng, J.: Design Automation Methods and Tools for Microfluidics-Based Biochips. Springer, Dordrecht (2006)

    Book  Google Scholar 

  2. Chakrabarty, K., Fair, R.B., Zeng, J.: Design tools for digital microfluidic biochips: towards functional diversification and more than Moore. Trans. Comput. Aided Des. Integr. Circuits Syst. 29(7), 1001–1017 (2010). doi:10.1109/TCAD.2010.2049153

    Article  Google Scholar 

  3. Dhar, S., Drezdon, S., Maftei, E.: Digital microfluidic biochip for malaria detection. Technical report, Duke University (2008)

    Google Scholar 

  4. Fan, S.-K., Hashi. C., Kim, C.-J.: Manipulation of multiple droplets on N × M grid by cross-reference EWOD driving scheme and pressure-contact packaging. In: Proceedings of the International Conference on MEMS, pp. 694–697 (2003)

    Google Scholar 

  5. Fair, R.B., Srinivasan, V., Paik, P., Pamula, V.K., Pollack, M.G.: Electrowetting-based on-chip sample processing for integrated microfluidics. In: IEEE International Electron Devices Meeting, pp. 779–782 (2003)

    Google Scholar 

  6. Fair, R.B., Khlystov, A., Tailor, T.D., Ivanov, V., Evans, R.D., Srinivasan, V., Pamula, V.K., Pollack, M.G., Griffin, P.B., Zhou, J.: Chemical and biological applications of digital-microfluidic devices. IEEE Des. Test Comput. 24(1), 10–24 (2007). doi:http://dx.doi.org/10.1109/MDT.2007.8

    Google Scholar 

  7. Gong, M., Kim, C.J.: Two-dimensional digital microfluidic system by multilayer printed circuit board. In: Proceedings of the Conference on Micro Electro Mechanical Systems, pp. 726–729 (2005)

    Google Scholar 

  8. Gong, J., Fan, S.K., Kim, C.J., et al.: Portable digital microfluidics platform with active but disposable lab-on-chip. In: Proceedings of the 17th IEEE International Conference on Micro Electro Mechanical Systems (MEMS), pp. 355–358 (2004)

    Google Scholar 

  9. Ho, T.Y., Zeng, J., Chakrabarty, K.: Digital microfluidic biochips: a vision for functional diversity and more than Moore. In: Proceedings of the International Conference on Computer-Aided Design, pp. 578–585 (2010)

    Google Scholar 

  10. Hu, K., Hsu, B.N., Madison, A., Chakrabarty, K., Fair, R.B.: Fault detection, real-time error recovery, and experimental demonstration for digital microfluidic biochips. In: Proceedings of the Conference on Design, Automation and Test in Europe, pp. 559–564 (2013)

    Google Scholar 

  11. Hwang, W., Su, F., Chakrabarty, K.: Automated design of pin-constrained digital microfluidic arrays for lab-on-a-chip applications. In: Proceedings of the Design Automation Conference, pp. 925–930 (2006)

    Google Scholar 

  12. Luo, Y., Chakrabarty, K., Ho, T.Y.: Error recovery in cyberphysical digital microfluidic biochips. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 32(1), 59–72 (2013)

    Article  Google Scholar 

  13. Luo, Y., Chakrabarty, K., Ho, T.Y.: Real-time error recovery in cyberphysical digital-microfluidic biochips using a compact dictionary. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 32(12), 1839–1852 (2013)

    Article  Google Scholar 

  14. Maftei, E., Pop, P., Madsen, J.: Routing-based synthesis of digital microfluidic biochips. Des. Autom. Embed. Syst. 16(1), 19–44 (2012)

    Article  Google Scholar 

  15. Maftei, E., Pop, P., Madsen, J.: Module-based synthesis of digital microfluidic biochips with droplet-aware operation execution. J. Emerg. Technol. Comput. Syst. 9(1), 2 (2013)

    Article  Google Scholar 

  16. Mark, D., Haeberle, S., Roth, G., von Stetten, F., Zengerle, R.: Microfluidic lab-on-a-chip platforms: requirements, characteristics and applications. Chem. Soc. Rev. 39(3), 1153–1182 (2010)

    Article  Google Scholar 

  17. Miller, E., Wheeler, A.R.: Digital bioanalysis. Anal. Bioanal. Chem. 393(2), 419–426 (2009)

    Article  Google Scholar 

  18. Moon, H., Wheeler, A.R., Garrell, R.L., Loo, J.A., Kim, C.J.: An integrated digital microfluidic chip for multiplexed proteomic sample preparation and analysis by MALDI-MS. Lab Chip 6(9), 1213–1219 (2006)

    Article  Google Scholar 

  19. Mukhopadhyay, R.: Microfluidics: on the slope of enlightenment. Anal. Chem. 81(11), 4169–4173 (2009)

    Article  Google Scholar 

  20. Paik, P., Pamula, V.K., Fair, R.B.: Rapid droplet mixers for digital microfluidic systems. Lab Chip 3, 253–259 (2003)

    Article  Google Scholar 

  21. Pollack, M.G., Shenderov, A.D., Fair, R.B.: Electrowetting-based actuation of droplets for integrated microfluidics. Lab Chip 2, 96–101 (2002)

    Article  Google Scholar 

  22. Ren, H., Fair, R.B.: Micro/nano liter droplet formation and dispensing by capacitance metering and electrowetting actuation. In: Proceedings of the IEEE-NANO, pp. 369–372 (2002)

    Google Scholar 

  23. Ren, H., Srinivasan, V., Fair, R.B.: Design and testing of an interpolating mixing architecture for electrowetting-based droplet-on-chip chemical dilution. In: Proceedings of the International Conference on Transducers, Solid-State Sensors, Actuators and Microsystems, pp. 619–622 (2003)

    Google Scholar 

  24. Srinivasan, V., Pamula, V.K., Pollack, M., Fair, R.B.: A digital microfluidic biosensor for multianalyte detection. In: Proceedings of the Micro Electro Mechanical Systems Conference, pp. 327–330 (2003)

    Google Scholar 

  25. Srinivasan, V., Pamula, V.K., Fair, R.B.: Droplet-based microfluidic lab-on-a-chip for glucose detection. Anal. Chim. Acta 507, 145–150 (2004)

    Article  Google Scholar 

  26. Srinivasan, V., Pamula, V.K., Fair, R.B.: An integrated digital microfluidic lab-on-a-chip for clinical diagnostics on human physiological fluids. Lab Chip 4, 310–315 (2004)

    Article  Google Scholar 

  27. Su, F., Ozev, S., Chakrabarty, K.: Concurrent testing of droplet-based microfluidic systems for multiplexed biomedical systems. In: Proceedings of the International Test Conference, pp. 883–892 (2004)

    Google Scholar 

  28. Su, F., Ozev, S., Chakrabarty, K.: Ensuring the operational health of droplet-based microelectrofluidic biosensor systems. IEEE J. Sens. 5, 763–773 (2005)

    Article  Google Scholar 

  29. Su, F., Hwang, W., Mukherjee, A., Chakrabarty, K.: Testing and diagnosis of realistic defects in digital microfluidic biochips. J. Electron. Test. 23(2–3), 219–233 (2007)

    Article  Google Scholar 

  30. Tabeling, P.: Introduction to Microfluidics. Oxford University Press, Oxford (2006)

    Google Scholar 

  31. Xu, T., Chakrabarty, K.: Functional testing of digital microfluidic biochips. In: Proceedings of the International Test Conference, pp. 1–10 (2007)

    Google Scholar 

  32. Xu, T., Chakrabarty, K.: Parallel scan-like test and multiple-defect diagnosis for digital microfluidic biochips. Trans. Biomed. Circuits Syst. 1(2), 148–158 (2007)

    Article  Google Scholar 

  33. Xu, T., Chakrabarty, K.: Broadcast electrode-addressing for pin-constrained multi-functional digital microfluidic biochips. In: Proceedings of the Design Automation Conference, pp. 173–178 (2008)

    Google Scholar 

  34. Xu, T., Chakrabarty, K.: Fault modeling and functional test methods for digital microfluidic biochips. Trans. Biomed. Circuits Syst. 3(4), 241–253 (2009)

    Article  Google Scholar 

  35. Zhao, Y., Chakrabarty, K.: Cross-contamination avoidance for droplet routing. In: Design and Testing of Digital Microfluidic Biochips, pp. 27–55. Springer, New York (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Pop, P., Alistar, M., Stuart, E., Madsen, J. (2016). Biochip Architecture Model. In: Fault-Tolerant Digital Microfluidic Biochips. Springer, Cham. https://doi.org/10.1007/978-3-319-23072-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-23072-6_3

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-23071-9

  • Online ISBN: 978-3-319-23072-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics