Skip to main content

Design Methodology for Digital Microfluidic Biochips

  • Chapter
Fault-Tolerant Digital Microfluidic Biochips

Abstract

This chapter presents an overview of the digital biochip design process, highlighting the main design tasks, with a focus on fault-tolerant biochips. The purpose is to explain how the methods presented in this book are used within a design methodology and to define the main design tasks. We highlight the difference between the “compilation” and “synthesis” terms used throughout the book. We discuss in more detail the compilation task, which is covered by Parts II and III, and its constituent subtasks. The architecture synthesis tasks are covered in Part IV. This chapter is intended to help in understanding how the methods presented in the book interact with each other. This chapter also presents the related work in the area of compilation and architecture synthesis approaches for digital microfluidic biochips.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alistar, M., Pop, P.: Synthesis of biochemical applications on digital microfluidic biochips with operation execution time variability. Integr. VLSI J. (2015). In Press

    Google Scholar 

  2. Alistar, M., Maftei, E., Pop, P., Madsen, J.: Synthesis of biochemical applications on digital microfluidic biochips with operation variability. In: Proceedings of the Symposium on Design Test Integration and Packaging of MEMS/MOEMS, pp. 350–357 (2010)

    Google Scholar 

  3. Alistar, M., Pop, P., Madsen, J.: Online synthesis for error recovery in digital microfluidic biochips with operation variability. In: Proceedings of the Symposium on Design, Test, Integration and Packaging of MEMS/MOEMS, pp. 53–58 (2012)

    Google Scholar 

  4. Alistar, M., Pop, P., Madsen, J.: Application-specific fault-tolerant architecture synthesis for digital microfluidic biochips. In: Proceedings of the 18th Asia and South Pacific Design Automation Conference, pp. 794–800 (2013)

    Google Scholar 

  5. Alistar, M., Pop, P., Madsen, J.: Redundancy optimization for error recovery in digital microfluidic biochips. Des. Autom. Embed. Syst. 19, 129–159 (2015)

    Article  Google Scholar 

  6. Bazargan, K., Kastner, R., Sarrafzadeh, M.: Fast template placement for reconfigurable computing systems. IEEE Des. Test Comput. 17(1), 68–83 (2000). doi:http://dx.doi.org/10.1109/54.825678

    Google Scholar 

  7. Bohringer, K.F.: Towards optimal strategies for moving droplets in digital microfluidic systems. In: Proceedings of IEEE International Conference on Robotics and Automation, pp. 1468–1474 (2004)

    Google Scholar 

  8. Chakrabarty, K., Su, F.: Digital Microfluidic Biochips: Synthesis, Testing, and Reconfiguration Techniques. CRC Press, Boca Raton (2006)

    Book  Google Scholar 

  9. Chakrabarty, K., Fair, R.B., Zeng, J.: Design tools for digital microfluidic biochips: towards functional diversification and more than Moore. Trans. Comput. Aided Des. Integr. Circuits Syst. 29(7), 1001–1017 (2010). doi:10.1109/TCAD.2010.2049153

    Article  Google Scholar 

  10. Cho, M., Pan, D.Z.: A high-performance droplet router for digital microfluidic biochips. In: Proceedings of the International Symposium on Physical Design, pp. 200–206 (2008)

    Google Scholar 

  11. Ding, J., Chakrabarty, K., Fair, R.B.: Scheduling of microfluidic operations for reconfigurable two-dimensional electrowetting arrays. Trans. Comput. Aided Des. Integr. Circuits Syst. 20, 1463–1468 (2001)

    Article  Google Scholar 

  12. Gong, M., Kim, C.J.: Two-dimensional digital microfluidic system by multilayer printed circuit board. In: Proceedings of the Conference on Micro Electro Mechanical Systems, pp. 726–729 (2005)

    Google Scholar 

  13. Griffith, E.J., Akella, S., Goldberg, M.K.: Performance characterization of a reconfigurable plannar array digital microfluidic system. Trans. Comput. Aided Des. Integr. Circuits Syst. 25, 340–352 (2006)

    Google Scholar 

  14. Grissom, D., Brisk, P.: Fast online synthesis of generally programmable digital microfluidic biochips. In: Proceedings of the 8th International Conference on Hardware/Software Codesign and System Synthesis, pp. 413–422 (2012)

    Google Scholar 

  15. Grissom, D., Brisk, P.: Path scheduling on digital microfluidic biochips. In: Proceedings of the 49th Annual Design Automation Conference, pp. 26–35 (2012)

    Google Scholar 

  16. Ho, T.Y., Zeng, J., Chakrabarty, K.: Digital microfluidic biochips: a vision for functional diversity and more than Moore. In: Proceedings of the International Conference on Computer-Aided Design, pp. 578–585 (2010)

    Google Scholar 

  17. Hsieh, Y.L., Ho, T.Y., Chakrabarty, K.: Design methodology for sample preparation on digital microfluidic biochips. In: Proceedings of the 30th International Conference on Computer Design, pp. 189–194 (2012)

    Google Scholar 

  18. Hsieh, Y.L., Ho, T.Y., Chakrabarty, K.: A reagent-saving mixing algorithm for preparing multiple-target biochemical samples using digital microfluidics. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 31(11), 1656–1669 (2012)

    Article  Google Scholar 

  19. Huang, T.W., Ho, T.Y.: A fast routability-and performance-driven droplet routing algorithm for digital microfluidic biochips. In: Proceedings of the International Conference on Computer Design, pp. 445–450 (2009)

    Google Scholar 

  20. Huang, T.W., Lin, C.H., Ho, T.Y.: A contamination aware droplet routing algorithm for digital microfluidic biochips. In: Proceedings of the International Conference on Computer-Aided Design, pp. 151–156 (2009)

    Google Scholar 

  21. Hwang, W., Su, F., Chakrabarty, K.: Automated design of pin-constrained digital microfluidic arrays for lab-on-a-chip applications. In: Proceedings of the Design Automation Conference, pp. 925–930 (2006)

    Google Scholar 

  22. Kerkhoff, H.G.: Testing microelectronic biofluidic systems. IEEE Des. Test Comput. 24(1), 72–82 (2007)

    Article  Google Scholar 

  23. Kotchoni, S.O., Gachomo, E.W., Betiku, E., Shonukan, O.O.: A home made kit for plasmid DNA mini-preparation. Afr. J. Biotechn. 2(4), 109–114 (2003)

    Google Scholar 

  24. Lin, C.C.Y., Chang, Y.W.: Cross-contamination aware design methodology for pin-constrained digital microfluidic biochips. In: Proceedings of the Design Automation Conference, pp. 641–646 (2010)

    Google Scholar 

  25. Lin, C.C.Y., Chang, Y.W.: ILP-based pin-count aware design methodology for microfluidic biochips. Trans. Comput. Aided Des. Integr. Circuits Syst. 29(9), 1315–1327 (2010)

    Article  Google Scholar 

  26. Luo, Y., Chakrabarty, K., Ho, T.Y.: A cyberphysical synthesis approach for error recovery in digital microfluidic biochips. In: Proceedings of the Conference on Design, Automation and Test in Europe, pp. 1239–1244 (2012)

    Google Scholar 

  27. Luo, Y., Bhattacharya, B.B., Ho, T.Y., Chakrabarty, K.: Optimization of polymerase chain reaction on a cyberphysical digital microfluidic biochip. In: Proceedings of the International Conference on Computer-Aided Design, pp. 622–629 (2013)

    Google Scholar 

  28. Luo, Y., Chakrabarty, K., Ho, T.Y.: Design of cyberphysical digital microfluidic biochips under completion-time uncertainties in fluidic operations. In: Proceedings of the 50th Annual Design Automation Conference, p. 44 (2013)

    Google Scholar 

  29. Luo, Y., Chakrabarty, K., Ho, T.Y.: Real-time error recovery in cyberphysical digital-microfluidic biochips using a compact dictionary. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 32(12), 1839–1852 (2013)

    Article  Google Scholar 

  30. Maftei, E., Paul, P., Madsen, J., Stidsen, T.: Placement-aware architectural synthesis of digital microfluidic biochips using ILP. In: Proceedings of the International Conference on Very Large Scale Integration of System on Chip, pp. 425–430 (2008)

    Google Scholar 

  31. Maftei, E., Pop, P., Madsen, J.: Tabu search-based synthesis of digital microfluidic biochips with dynamically reconfigurable non-rectangular devices. Des. Autom. Embed. Syst. 14(3), 287–307 (2010)

    Article  Google Scholar 

  32. Maftei, E., Pop, P., Madsen, J.: Droplet-aware module-based synthesis for fault-tolerant digital microfluidic biochips. In: Proceedings of the Symposium on Design, Test, Integration and Packaging of MEMS/MOEMS, pp. 47–52 (2012)

    Google Scholar 

  33. Pollack, M.G., Shenderov, A.D., Fair, R.B.: Electrowetting-based actuation of droplets for integrated microfluidics. Lab Chip 2, 96–101 (2002)

    Article  Google Scholar 

  34. Ren, H., Srinivasan, V., Fair, R.B.: Design and testing of an interpolating mixing architecture for electrowetting-based droplet-on-chip chemical dilution. In: Proceedings of the International Conference on Transducers, Solid-State Sensors, Actuators and Microsystems, pp. 619–622 (2003)

    Google Scholar 

  35. Ricketts, A., Irick, K., Vijaykrishnan, N., Irwin, M.: Priority scheduling in digital microfluidics-based biochips. In: Proceedings of the Design, Automation and Test in Europe, vol. 1, pp. 1–6 (2006)

    Google Scholar 

  36. Rose, D.: Microdispensing technologies in drug discovery. Drug Discov. Today 4(9), 411–419 (1999)

    Article  Google Scholar 

  37. Roy, S., Bhattacharya, B.B., Chakrabarty, K.: Waste-aware dilution and mixing of biochemical samples with digital microfluidic biochips. In: Proceedings of the Conference on Design, Automation and Test in Europe, pp. 1–6 (2011)

    Google Scholar 

  38. Sista, R.S., Eckhardt, A.E., Wang, T., Graham, C., Rouse, J.L., Norton, S.M., Srinivasan, V., Pollack, M.G., Tolun, A.A., Bali, D., et al.: Digital microfluidic platform for multiplexing enzyme assays: implications for lysosomal storage disease screening in newborns. Clin. Chem. 57(10), 1444–1451 (2011)

    Article  Google Scholar 

  39. Su, F., Chakrabarty, K.: Architectural-level synthesis of digital microfluidics-based biochips. In: Proceedings of the International Conference on Computer Aided Design, pp. 223–228 (2004)

    Google Scholar 

  40. Su, F., Chakrabarty, K.: Design of fault-tolerant and dynamically-reconfigurable microfluidic biochips. In: Proceedings of the Conference on Design, Automation and Test in Europe, pp. 1202–1207 (2005)

    Google Scholar 

  41. Su, F., Chakrabarty, K.: Unified high-level synthesis and module placement for defect-tolerant microfluidic biochips. In: Proceedings of the Design Automation Conference, pp. 825–830 (2005). http://doi.acm.org/10.1145/1065579.1065797

  42. Su, F., Chakrabarty, K.: Module placement for fault-tolerant microfluidics-based biochips. ACM Trans. Des. Autom. Electron. Syst. 11(3), 682–710 (2006)

    Article  Google Scholar 

  43. Su, F., Chakrabarty, K.: Yield enhancement of reconfigurable microfluidics-based biochips using interstitial redundancy. J. Emerg. Technol. Comput. Syst. 2(2), 104–128 (2006)

    Article  Google Scholar 

  44. Su, F., Chakrabarty, K.: High-level synthesis of digital microfluidic biochips. J. Emerg. Technol. Comput. Syst. 3(4), 1 (2008)

    Article  Google Scholar 

  45. Su, F., Ozev, S., Chakrabarty, K.: Testing of droplet-based microelectrofluidic systems. In: Proceedings of the International Test Conference, pp. 1192–1200 (2003)

    Google Scholar 

  46. Su, F., Ozev, S., Chakrabarty, K.: Concurrent testing of droplet-based microfluidic systems for multiplexed biomedical systems. In: Proceedings of the International Test Conference, pp. 883–892 (2004)

    Google Scholar 

  47. Su, F., Ozev, S., Chakrabarty, K.: Ensuring the operational health of droplet-based microelectrofluidic biosensor systems. IEEE J. Sens. 5, 763–773 (2005)

    Article  Google Scholar 

  48. Su, F., Hwang, W., Mukherjee, A., Chakrabarty, K.: Defect-oriented testing and diagnosis of digital microfluidics-based biochips. In: Proceedings of the International Test Conference, pp. 487–496 (2005)

    Google Scholar 

  49. Su, F., Hwang, W., Chakrabarty, K.: Droplet routing in the synthesis of digital microfluidic biochips. In: Proceedings of the Design, Automation and Test in Europe, vol. 1, pp. 73–78 (2006)

    Google Scholar 

  50. Su, F., Hwang, W., Mukherjee, A., Chakrabarty, K.: Testing and diagnosis of realistic defects in digital microfluidic biochips. J. Electron. Test. 23(2–3), 219–233 (2007)

    Article  Google Scholar 

  51. Xiao, Z., Young, E.F.Y.: Crossrouter: a droplet router for cross-referencing digital microfluidic biochips. In: Proceedings of the Asia and South Pacific Design Automation Conference, pp. 269–274 (2010)

    Google Scholar 

  52. Xu, T., Chakrabarty, K.: Droplet-trace-based array partitioning and a pin assignment algorithm for the automated design of digital microfluidic biochips. In: Proceedings of the International Conference on Hardware/Software Codesign and System Synthesis, pp. 112–117 (2006)

    Google Scholar 

  53. Xu, T., Chakrabarty, K.: A cross-referencing-based droplet manipulation method for high-throughput and pin-constrained digital microfluidic arrays. In: Proceedings of the Conference on Design, Automation and Test in Europe, pp. 552–557 (2007)

    Google Scholar 

  54. Xu, T., Chakrabarty, K.: Functional testing of digital microfluidic biochips. In: Proceedings of the International Test Conference, pp. 1–10 (2007)

    Google Scholar 

  55. Xu, T., Chakrabarty, K.: Integrated droplet routing and defect tolerance in the synthesis of digital microfluidic biochips. In: Proceedings of the Design Automation Conference, pp. 948–953 (2007)

    Google Scholar 

  56. Xu, T., Chakrabarty, K.: Parallel scan-like testing and fault diagnosis techniques for digital microfluidic biochips. In: Proceedings of the European Test Symposium, pp. 63–68 (2007)

    Google Scholar 

  57. Xu, T., Chakrabarty, K.: Broadcast electrode-addressing for pin-constrained multi-functional digital microfluidic biochips. In: Proceedings of the Design Automation Conference, pp. 173–178 (2008)

    Google Scholar 

  58. Xu, T., Chakrabarty, K.: Integrated droplet routing and defect tolerance in the synthesis of digital microfluidic biochips. J. Emerg. Technol. Comput. Syst. 4(3), 11 (2008)

    Article  Google Scholar 

  59. Xu, T., Chakrabarty, K.: Fault modeling and functional test methods for digital microfluidic biochips. Trans. Biomed. Circuits Syst. 3(4), 241–253 (2009)

    Article  Google Scholar 

  60. Yuh, P.H., Yang, C.L., Chang, Y.W.: Placement of defect-tolerant digital microfluidic biochips using the T-tree formulation. ACM J. Emerg. Technol. Comput. Syst. 3(3) (2007)

    Google Scholar 

  61. Yuh, P.H., Yang, C.L., Chang, Y.W.: Bioroute: A network-flow-based routing algorithm for the synthesis of digital microfluidic biochips. Trans. Comput. Aided Des. Integr. Circuits Syst. 27(11), 1928–1941 (2008)

    Article  Google Scholar 

  62. Zhao, Y., Chakrabarty, K.: Cross-contamination avoidance for droplet routing in digital microfluidic biochips. In: Proceedings of the Conference on Design, Automation and Test in Europe, pp. 1290–1295 (2009)

    Google Scholar 

  63. Zhao, Y., Chakrabarty, K.: Synchronization of washing operations with droplet routing for cross-contamination avoidance in digital microfluidic biochips. In: Proceedings of the Design Automation Conference, pp. 641–646 (2010)

    Google Scholar 

  64. Zhao, Y., Chakrabarty, K.: Cross-contamination avoidance for droplet routing. In: Design and Testing of Digital Microfluidic Biochips, pp. 27–55. Springer, Berlin (2013)

    Google Scholar 

  65. Zhao, Y., Xu, T., Chakrabarty, K.: Integrated control-path design and error recovery in the synthesis of digital microfluidic lab-on-chip. J. Emerg. Technol. Comput. Syst. 6(3), 11 (2010)

    Article  Google Scholar 

  66. Zhao, Y., Chakrabarty, K., Sturmer, R., Pamula, V.K.: Optimization techniques for the synchronization of concurrent fluidic operations in pin-constrained digital microfluidic biochips. Trans. Very Large Scale Integr. VLSI Syst. 20(6), 1132–1145 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Pop, P., Alistar, M., Stuart, E., Madsen, J. (2016). Design Methodology for Digital Microfluidic Biochips. In: Fault-Tolerant Digital Microfluidic Biochips. Springer, Cham. https://doi.org/10.1007/978-3-319-23072-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-23072-6_2

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-23071-9

  • Online ISBN: 978-3-319-23072-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics