Skip to main content
  • 548 Accesses

Abstract

This chapter presents an introduction to the microfluidics field and microfluidic biochips. We discuss the main fluid propulsion principles used by modern microfluidic platforms, with a focus on “digital” microfluidic biochips, which are the topic of this book. Digital microfluidic biochips manipulate the fluids as small “droplets” using electrokinetics, i.e., electrowetting-on-dielectric. Several application areas for biochips are discussed, and the motivation behind the work presented in this book is introduced. At the end of the chapter, we outline the structure of the book and an overview of the topics covered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Advanced Liquid Logic: http://www.liquid-logic.com (2014). http://www.liquid-logic.com/technology.html

  2. Chakrabarty, K.: Design automation and test solutions for digital microfluidic biochips. IEEE Trans. Circuits Syst. 57, 4–17 (2010)

    Article  MathSciNet  Google Scholar 

  3. Chakrabarty, K., Su, F.: Digital Microfluidic Biochips: Synthesis, Testing, and Reconfiguration Techniques. CRC Press, Boca Raton (2006)

    Book  Google Scholar 

  4. Chakrabarty, K., Zeng, J.: Design Automation Methods and Tools for Microfluidics-Based Biochips. Springer, Dordrecht (2006)

    Book  Google Scholar 

  5. Chakrabarty, K., Fair, R.B., Zeng, J.: Design tools for digital microfluidic biochips: towards functional diversification and more than Moore. Trans. Comput. Aided Des. Integr. Circuits Syst. 29(7), 1001–1017 (2010). DOI 10.1109/TCAD.2010.2049153

    Article  Google Scholar 

  6. Dhar, S., Drezdon, S., Maftei, E.: Digital microfluidic biochip for malaria detection. Technical report, Duke University (2008)

    Google Scholar 

  7. Fair, R.B.: Digital microfluidics: is a true lab-on-a-chip possible? Microfluid. Nanofluid. 3(3), 245–281 (2007)

    Article  Google Scholar 

  8. Fair, R.B., Khlystov, A., Tailor, T.D., Ivanov, V., Evans, R.D., Srinivasan, V., Pamula, V.K., Pollack, M.G., Griffin, P.B., Zhou, J.: Chemical and biological applications of digital-microfluidic devices. IEEE Des. Test Comput. 24(1), 10–24 (2007). DOI http://dx.doi.org/10.1109/ MDT.2007.8

    Google Scholar 

  9. Fouillet, Y., Jary, D., Chabrol, C., Claustre, P., Peponnet, C.: Digital microfluidic design and optimization of classic and new fluidic functions for lab on a chip systems. Microfluid. Nanofluid. 4(3), 159–165 (2008)

    Article  Google Scholar 

  10. Hall, D.A., Ptacek, J., Snyder, M.: Protein microarray technology. Mech. Ageing Dev. 128, 161–167 (2006)

    Article  Google Scholar 

  11. International Technology Roadmap for Semiconductors: http://www.itrs.net/Links/2007ITRS/Home2007.htm (2013)

  12. Kopp, M.U., de Mello, A.J., Manz, A.: Chemical amplification: continuous-flow PCR on a chip. Science 280(5366), 1046–1048 (1998)

    Article  Google Scholar 

  13. Luo, Y., Chakrabarty, K., Ho, T.Y.: Real-time error recovery in cyberphysical digital-microfluidic biochips using a compact dictionary. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 32(12), 1839–1852 (2013)

    Article  Google Scholar 

  14. Mark, D., Haeberle, S., Roth, G., von Stetten, F., Zengerle, R.: Microfluidic lab-on-a-chip platforms: requirements, characteristics and applications. Chem. Soc. Rev. 39(3), 1153–1182 (2010)

    Article  Google Scholar 

  15. Melin, J., Quake, S.R.: Microfluidic large-scale integration: the evolution of design rules for biological automation. Ann. Rev. Biophys. Biomol. Struct. 36, 213–231 (2007)

    Article  Google Scholar 

  16. Moore, G.E.: Cramming more components onto integrated circuits. Electronics 38(8), 114–117 (1965)

    Google Scholar 

  17. Mukhopadhyay, R.: Microfluidics: on the slope of enlightenment. Anal. Chem. 81(11), 4169–4173 (2009)

    Article  Google Scholar 

  18. Pamula, V.K., Srinivasan, V., Chakrapani, H., Fair, R.B., Toone, E.J.: A droplet-based lab-on-a-chip for colorimetric detection of nitroaromatic explosives. In: Proceedings of the Micro Electro Mechanical Systems Conference, pp. 722–725 (2005)

    Google Scholar 

  19. Pollack, M.G., Paik, P.Y., Shenderov, A.D., Pamula, V.K., Dietrich, F.S., Fair, R.B.: Investigation of electrowetting-based microfluidics for real-time pcr applications. In: Proceedings of the Micro Total Analysis Systems, μTAS, pp. 619–622 (2003)

    Google Scholar 

  20. Pollack, M.G., Shenderov, A.D., Fair, R.B.: Electrowetting-based actuation of droplets for integrated microfluidics. Lab Chip 2, 96–101 (2002)

    Article  Google Scholar 

  21. Sista, R., Hua, Z., Thwar, P., Sudarsan, A., Srinivasan, V., Eckhardt, A., Pollack, M., Pamula, V.: Development of a digital microfluidic platform for point of care testing. Lab Chip 8(12), 2091–2104 (2008)

    Article  Google Scholar 

  22. Sista, R.S., Eckhardt, A.E., Wang, T., Graham, C., Rouse, J.L., Norton, S.M., Srinivasan, V., Pollack, M.G., Tolun, A.A., Bali, D., et al.: Digital microfluidic platform for multiplexing enzyme assays: implications for lysosomal storage disease screening in newborns. Clin. Chem. 57(10), 1444–1451 (2011)

    Article  Google Scholar 

  23. Srinivasan, V., Pamula, V.K., Fair, R.B.: An integrated digital microfluidic lab-on-a-chip for clinical diagnostics on human physiological fluids. Lab Chip 4, 310–315 (2004)

    Article  Google Scholar 

  24. Stoughton, R.B.: Applications of DNA microarrays in biology. Ann. Rev. Biochem. 74, 53–82 (2005)

    Article  Google Scholar 

  25. Thorsen, T., Maerkl, S., Quake, S.: Microfluidic largescale integration. Science 298, 580–584 (2002)

    Article  Google Scholar 

  26. Wang, W., Li, Z.X., Yang, Y.J., Guo, Z.Y.: Droplet based micro oscillating flow-through PCR chip. In: Proceedings of the International Conference on Micro Electro Mechanical Systems Conference, pp. 280–283 (2004)

    Google Scholar 

  27. Yoshida, J.I.: Flash chemistry: flow microreactor synthesis based on high-resolution reaction time control. Chem. Rec. 10(5), 332–341 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Pop, P., Alistar, M., Stuart, E., Madsen, J. (2016). Introduction. In: Fault-Tolerant Digital Microfluidic Biochips. Springer, Cham. https://doi.org/10.1007/978-3-319-23072-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-23072-6_1

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-23071-9

  • Online ISBN: 978-3-319-23072-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics