Skip to main content

Density and Thermal Structure of the Southern Andes and Adjacent Foreland from 32° to 55°S Using Earth Gravity Field Models

  • Chapter
  • First Online:
Growth of the Southern Andes

Part of the book series: Springer Earth System Sciences ((SPRINGEREARTH))

Abstract

GOCE satellite data and EGM2008 model are used to calculate the gravity anomaly and the vertical gravity gradient, both corrected by the topographic effect, in order to delineate main tectonic features related to density variations. In particular, using the Bouguer anomaly from GOCE, we calculated the crust–mantle discontinuity obtaining elastic thicknesses in the frame of the isostatic lithospheric flexure model applying the convolution method approach. Results show substantial variations in the density, compositional and thermal structure, and isostatic and flexural behavior of the continental lithosphere along the Southern Andes and adjacent foreland region.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alric VI, Haller MJ, Féraud G (1996) Geocronología 40Ar/39Ar del volcanismo jurasico de la Patagonia Extrandina. XIII Congreso Geologico Argentino y III Congreso Exploración de Hidrocarburos (Buenos Aires). Actas 5:243–250

    Google Scholar 

  • Alvarez O, Gimenez ME, Braitenberg C, Folguera A (2012) GOCE satellite derived gravity and gravity gradient corrected for topographic effect in the South Central Andes region. Geophys J Int 190(2):941–959. doi:10.1111/j.1365-246X.2012.05556.x

    Google Scholar 

  • Alvarez O, Gimenez ME, Braitenberg C (2013) Nueva metodología para el cálculo del efecto topográfico para la corrección de datos satelitales. Rev Asoc Geol Argent 70(4):422–429

    Google Scholar 

  • Alvarez O, Nacif S, Gimenez M, Folguera A, Braitenberg A (2014) Goce derived vertical gravity gradient delineates great earthquake rupture zones along the Chilean margin. Tectonophysics 622:198–215. http://dx.doi.org/10.1016/j.tecto.2014.03.011

    Google Scholar 

  • Alvarez O, Gimenez ME, Martinez MP, LinceKlinger F, Braitenberg C (2015) New insights into the Andean crustal structure between 32° and 34°S from GOCE satellite gravity data and EGM2008 model. In: Sepúlveda SA, Giambiagi LB, Moreiras SM, Pinto L, Tunik M, Hoke GD, Farías M (eds) Geodynamic processes in the Andes of Central Chile and Argentina, Geol Soc Lond, Special Publication, vol 399, pp 183–202. http://dx.doi.org/10.1144/SP399.3

    Google Scholar 

  • Amante C, Eakins BW (2009). ETOPO1 1 Arc-Minute global relief model: procedures, data sources and analysis. NOAA technical memorandum NESDIS NGDC-24. National Geophysical Data Center, NOAA. doi:10.7289/V5C8276M

  • ANCORP Working Group (2003) Seismic imaging of a convergent continental margin and plateau in the central Andes (Andean Continental Research Project 1996 (ANCORP’96)). J Geophys Res 108(B7). http://dx.doi.org/10.1029/2002JB001771

  • Barthelmes F (2009) Definition of functionals of the geopotential and their calculation from spherical harmonic models. Theory and formulas used by the calculation service of the ICGEM. Scientific Technical Report. GFZ German Research Centre for Geosciences, Postdam, Germany

    Google Scholar 

  • Bettini FH (1984) Pautas sobre cronología estructural en el área del cerro Lotena, cerro Granito y su implicancia en el significado de la dorsal del Neuquén, provincia del Neuquén. IX Congrego Geológico Argentino (San Carlos de Bariloche). Actas 2:163–169

    Google Scholar 

  • Bouman J, Ebbing J, Fuchs M (2013) Reference frame transformation of satellite gravity gradients and topographic mass reduction. J Geophys Res 118(2):759–774

    Article  Google Scholar 

  • Bourgois J, Martin H, Lagabrielle Y, Le Moigne J, Frutos Jara J (1996) Subduction-erosion related to spreading-ridge subduction: Taitao Peninsula (Chile margin triple junction area). Geology 24:723–726

    Article  Google Scholar 

  • Braitenberg C (2014) Exploration of tectonic structures with GOCE in Africa and across-continents. EGU Gen Assembly Conf Abstr 16:7277

    Google Scholar 

  • Braitenberg C, Ebbing J, Götze HJ (2002) Inverse modeling of elastic thickness by convolution method-the Eastern Alps as a case example. Earth Planet Sci Lett 202:387–404

    Article  Google Scholar 

  • Braitenberg C, Wienecke S, Ebbing J, Bom W, Redfield T (2007) Joint gravity and isostatic analysis for basement studies-a novel tool. EGM International Wokshop, Innovation on in EM, Grav. and Mag. Methods: a new perspective for exploration (Capri), Extended Abstracts

    Google Scholar 

  • Braitenberg C, Mariani P, Ebbing J, Sprlak, M (2011) The enigmatic Chad lineament revisited with global gravity and gravity-gradient fields. In: Van Hinsbergen DJJ, Buiter SJH, Torsvik TH, Gaina C, Webb SJ (eds) The formation and evolution of Africa: a synopsis of 3.8 Ga of Earth history. Geol Soc London, Special Publication, vol 357, pp 329–341

    Google Scholar 

  • Brogioni N (1990) Geología y petrografía del vulcanismo mio-plioceno de la provincia de San Luis. Rev Museo de La Plata Geología 90:197–214

    Google Scholar 

  • Bruinsma SL, Marty JC, Balmino G, Biancale R, Förste C, Abrikosov O, Neumayer H (2010) GOCE gravity field recovery by means of the direct numerical method. In: Lacoste-Francis H (ed) Proceedings of the ESA living planet symposium, Bergen, Norway, ESA Publication (27) SP-686

    Google Scholar 

  • Bruinsma SL, Förste C, Abrikosov O, Marty JC, Rio MH, Mulet S, Bonvalot S (2013) The new ESA satellite-only gravity field model via the direct approach. Geophys Res Lett 40:3607–3612

    Article  Google Scholar 

  • Burov EB, Diament M (1995) The effective elastic thickness (Te) of continental lithosphere: What does it really mean? J Geophys Res 100:3905–3927

    Article  Google Scholar 

  • Cande SC, Leslie RB (1986) Late Cenozoic tectonics of the southern Chile trench. J Geophys Res 91:471–496

    Article  Google Scholar 

  • Cembrano J, Hervé F, Lavenu A (1996) The Liquifie Ofqui fault zone: a long-lived intra-arc fault system in southern Chile. Tectonophysics 259:55–66

    Article  Google Scholar 

  • Chernicoff CJ, Zappettini EO, Santos JOS, Beyer E, McNaughton NJ (2008) Foreland basin deposits associated with Cuyania accretion in La Pampa Province, Argentina. Gondwana Res 13:189–203

    Article  Google Scholar 

  • Contreras-Reyes E (2008) Evolution of the seismic structure of the incoming/subducting oceanic Nazca plate off south-central Chile. Unpublished Ph.D. Thesis. Christian-Albrechts-Universität zu Kiel, Germany, p 143

    Google Scholar 

  • Dalziel IWD, De Wit MF, Palmer KF (1974) Fossil marginal basin in the Southern Andes. Nature 250:291–294

    Article  Google Scholar 

  • Feraud G, Alric V, Fornari M (1999) 40Ar/39Ar dating of the Jurassic volcanic province of Patagonia: migrating magmatism related to Gondwana break-up and subduction. Earth Planet Sci Lett 172:83–96

    Article  Google Scholar 

  • Flueh ER, Vidal N, Ranero CR, Hokja A, von Huene R, Bialas J, Hinz K, Cordoba D, Danobeitia JJ, Zelt C (1998) Seismic investigation of the continental margin off- and onshore Valparaiso, Chile. Tectonophysics 288:251–263

    Article  Google Scholar 

  • Förste C, Bruinsma SL, Shako R, Abrikosov O, Flechtner F, Marty JC, Lemoine JM, Dahle C, Neumeyer H, Barthelmes F, Biancale R, Balmino G, König R (2012) A new release of EIGEN-6: The latest combined global gravity field model including LAGEOS, GRACE and GOCE data from the collaboration of GFZ Potsdam and GRGS Toulouse. EGU Gen Assembly Conf Abstr 14:2821

    Google Scholar 

  • Gans C, Beck S, Zandt G, Gilbert H, Alvarado P, Anderson M, Linkimer L (2011) Continental and oceanic crustal structure of the Pampean flat slab region, western Argentina, using receiver function analysis: new high-resolution results. Geophys J Int 186:45–58

    Article  Google Scholar 

  • García Morabito E, Folguera A, Melnick D, Ramos VA (2003) Variabilidad en la actividad del retroarco andino entre 37 y 39°. X Congreso Geológico Chile (Concepción), Actas: p 11

    Google Scholar 

  • Ghidella ME, Yañez G, LaBrecque HL (2002) Revised tectonic implications for the magnetic anomalies of the Western Weddell Sea. Tectonophysics 347:65–86

    Article  Google Scholar 

  • Ghiglione MC, Ramos VA (2005) Progression of deformation in the southernmost Andes. Tectonophysics 405:25–46

    Article  Google Scholar 

  • Gimenez ME, Martínez MP, Introcaso A (2000) A Crustal Model based mainly on Gravity data in the area between the Bermejo Basin and the Sierras de Valle Fértil- Argentina. J South Am Earth Sci 13(3):275–286

    Article  Google Scholar 

  • Gimenez ME, Braitenberg C, Martinez MP, Introcaso A (2009) A comparative analysis of seismological and gravimetric crustal thicknesses below the Andean Region with Flat Subduction of the Nazca Plate. Int J Geophys. doi:10.1155/2009/607458

    Google Scholar 

  • Göetze C, Evans B (1979) Stress and temperature in the bending lithosphere as constrained by experimental rock mechanism. Geophys J Royal Astron Soc 59:463–478

    Article  Google Scholar 

  • Grombein T, Heck B, Seitz K (2013) Optimized formulas for the gravitational field of a tesseroid. J Geodyn 87:645–660

    Article  Google Scholar 

  • Hackney R, Echtler HP, Franz G, Götze HJ, Lucassen F, Marchenko D, Melnick D, Meyer U, Schmidt S, Tašárová Z, Tassara A, Wienecke S (2006) The segmented overriding plate and coupling at the South-Central Chilean Margin (36–42°S). In: Oncken O, Chong G, Franz G, Giese P, Götze HJ, Ramos VA, Strecker MR, Wigger P (eds) The Andes. Active subduction orogeny. Frontiers in Earth science series. Springer, New York, pp 355–375

    Google Scholar 

  • Hervé F, Demant A, Pankhurst RJ, Ramírez E (1996) Age and Al-inhornblende geobarometry in the northern Patagonian batholith, Aysén, Chile. III International Symposium on Andean Geodynamics (Saint Malo), pp 579–582

    Google Scholar 

  • Hervé F, Godoy E, Mpodozis C, Fanning CM (2004) Monitoring magmatism of the Patagonian Batholith through the U-SHRIMP dating of detrital zircons in sedimentary units of the Magallanes basin. Bolletino di Geofisica Teorica ed Applicata. Electron Files 45:113–117

    Google Scholar 

  • Hofmann-Wellenhof B, Moritz H (2006) Physical geodesy, 2nd edn. Springer, Berlin

    Google Scholar 

  • Introcaso A (2006) Geodesia Física. Boletin del Instituto de Fisografia y Geologia 1:1–128

    Google Scholar 

  • Inrocaso A, Pacino MC, Fraga H (1992) Gravity, isostasy and Andean crustal shortening between latitudes 30°S and 35°S. Tectonophysics 205:31–48

    Article  Google Scholar 

  • Introcaso A, Pacino MC, Guspi F (2000) The Andes of Argentina and Chile: crustal configuration, isostasy, shortening and tectonic features from gravity data. Temas de Geociencia 5:31

    Google Scholar 

  • Janak J, Sprlak M (2006) New software for gravity field modelling using spherical Armonic. Geod Cartog Hor 52:1–8

    Google Scholar 

  • Jordan T, Allmendinger R (1986) The Sierras Pampean of Argentina: a modern analogue of Rocky Mountain foreland deformation. Am J Sci 286:737–764

    Article  Google Scholar 

  • Kay SM, Coira BL (2009) Shallowing and steepening subduction zones, continental lithospheric loss, magmatism, and crustal flow under the Central Andean Altiplano–Puna Plateau. In: Kay SM, Ramos VA, Dickinson WR (eds) Backbone of the Americas: shallow subduction, plateau uplift, and ridge and terrane collision. Geol Soc Am Memoirs 204. doi:10.1130/2009.1204(11)

  • Kay SM, Gordillo CE (1994) Pocho volcanic rocks and the melting of depleted continental lithosphere above a shallowly dipping subduction zone in the Central Andes. Contrib Miner Petrol 117:25–44

    Article  Google Scholar 

  • Klepeis KA (1994) The Magallanes and Deseado fault zones: Major domains of the South American-Scotia transform plate boundary in southernmost South America, Tierra del Fuego. J Geophys Res 99:22001–22014

    Article  Google Scholar 

  • Köther N, Götze HJ, Gutknecht BD, Jahr T, Jentzsch G, Lücke OH, Mahatsente R, Sharm R, Zeumann S (2012) The seismically active Andean and Central American margins: can satellite gravity map lithospheric structures? J Geodyn 59(60):207–218

    Article  Google Scholar 

  • Krawczyk CM, Mechie J, Lüth S, Tašárová Z, Wigger P, Stiller M, Brasse H, Echtler HP, Araneda M, Bataille K (2006) Geophysical signatures and active tectonics at the South-Central chilean margin. In: Oncken O, Chong G, Franz G, Giese P, Götze H-J, Ramos VA, Strecker MR, Wigger P (eds) The Andes. Active subduction orogeny. Frontiers in Earth science series. Springer, Berlin, pp 171–192

    Google Scholar 

  • Li X (2001) Vertical resolution: gravity versus vertical gravity gradient. Lead Edge 20:901–904

    Article  Google Scholar 

  • Li Y, Braitenberg C, Yang Y (2013) Interpretation of gravity data by the continuous wavelet transform: the case of the Chad lineament (North-Central Africa). J Appl Geophys 90:62–70

    Article  Google Scholar 

  • Linares E, Llambias E, Latorre (1980) Geología de la Provincia de La Pampa, República Argentina y Geocronología de sus rocas metamórficas y eruptivas. Rev Assoc Geol Argent 35(1):87–146

    Google Scholar 

  • Lira R, Millone HA, Kirschbaum AM, Moreno RS (1997) Calcalkaline arc granitoid activity in the Sierra Norte Ambargasta ranges central Argentina. J S Am Earth Sci 10:157–177

    Article  Google Scholar 

  • Lodolo E, Menichetti M, Bartole R, Ben-Avraham Z, Tassone A, Lippai H (2003) Magallanes-Fagnano continental transform fault (Tierra del Fuego, southernmost South America). Tectonics 22. doi:10.1029/2003TC001500

    Google Scholar 

  • Lowry AR, Ribe NM, Smith RB (2000) Dynamic elevation of the Cordillera, western United States. J Geophys Res 105:23–371

    Article  Google Scholar 

  • Lyon-Caen H, Molnar P (1983) Constraints on the structure of the Himalaya from an analysis of gravity anomalies and a flexural model of the lithosphere. J Geophys Res 88:8171–8191

    Article  Google Scholar 

  • Mariani P, Braitenberg C, Ussami N (2013) Explaining the thick crust in Paraná basin, Brazil, with satellite GOCE gravity observations. J S Am Earth Sci 45:209–223

    Article  Google Scholar 

  • Molodensky MS, Eremeev VF, Yurkina MI (1962) Methods for study of the external gravity field and figure of the Earth, Israel Program of Scientific Translations, Jerusalem (Russian original 1960)

    Google Scholar 

  • Mosquera A, Ramos VA (2006) Intraplate deformation in the Neuquén Basin. In: Kay SM, Ramos VA (eds) Evolution of an Andean margin: A tectonic and magmatic view from the Andes to the Neuquén Basin (35°–39°S latitude). Geol Soc of America, Special Paper 407: 97–124

    Google Scholar 

  • Olivero EB (1998) Mesozoic-Paleogene geology of the marginal-Austral basin of Tierra del Fuego. Mesozoic-Paleogene geology of the marginal-Austral basin of Tierra del Fuego. III Annual Conference, IGCP Project 381, South Atlantic Mesozoic Correlations (Ushuaia), Field Trip Guide, pp 1–42

    Google Scholar 

  • Pail R, Bruisma S, Migliaccio F, Förste C, Goiginger H, Schuh WD, Höck E, Reguzzoni M, Brockmann JM, Abrikosov O, Veicherts M, Fecher T, Mayrhofer R, Krasbutter I, Sansò F, Tscherning CC (2011) First GOCE gravity field models derived by three different approaches. J Geodyn 85:819–843

    Article  Google Scholar 

  • Pavlis NK, Holmes SA, Kenyon SC, Factor JK (2008) An Earth gravitational model to degree 2160: EGM2008. General Assembly of the European Geosciences Union, Vienna, Austria

    Google Scholar 

  • Pavlis NK, Holmes SA, Kenyon SC, Factor JK (2012) The development and evaluation of the Earth Gravitational Model (EGM2008). J Geophys Res 117:B04406. doi:10.1029/2011JB008916

    Article  Google Scholar 

  • Perez-Gussinye M, Lowry AR, Phipps Morgan J, Tassara A (2008) Effective elastic thickness variations along the Andean margin and their relationship to subduction geometry. Geochem Geophys Geosyst 9(2) doi:10.1029/2007GC001786

    Google Scholar 

  • Ramos VA (1988) Tectonics of the late proterozoic–early Paleozoic: a collisional history of southern South America. Episodes 11(3):168–174

    Google Scholar 

  • Ramos VA (1999) Las Provincias Geologicas del Territorio Argentino. In: Caminos R (ed) Geologia Argentina. Instituto de Geología y Recursos Minerales 29(3):41–96

    Google Scholar 

  • Ramos VA (2004a) Cuyania, an exotic block to Gondwana: review of a historical success and the present problems. Gondwana Res 7:1009–1026

    Article  Google Scholar 

  • Ramos VA (2004b) Tectonics of the southernmost Andes: a comparison between the Patagonian and the Fuegian Cordilleras. Bolletino di Geofisica Teorica ed Applicata. Electron Files 45:1–10

    Google Scholar 

  • Ramos VA (2009) Anatomy and global context of the Andes: main geologic features and the Andean orogenic cycle. In: Kay S, Ramos VA, Dickinson W (eds) Backbone of the Americas: shallow subduction, plateau uplift, and ridge and terrane collision (Boulder). Geol Soc Am Memoirs, vol 204, pp 31–65

    Google Scholar 

  • Ramos VA, Aguirre-Urreta MB (1994) Cretaceous evolution of the Magallanes basin. In: Salfity JA (ed) Cretaceous tectonics of the Andes. Earth Evolution Series. Braunschweig/Wiesbaden, Vieweg+Teubner Verlag, pp 315–345

    Google Scholar 

  • Ramos VA, Cristallini E, Pérez D (2002) The Pampean flat-slab of the Central Andes. J S Am Earth Sci 15:59–78

    Article  Google Scholar 

  • Ramos VA, Riccardi A, Rolleri EO (2004a) Límites naturales del norte de la Patagonia. Rev Assoc Geol Argent 59(4):785–786

    Google Scholar 

  • Ramos VA, Zapata T, Cristallini E, Introcaso A (2004b) The Andean thrust system: latitudinal variations in structural styles and orogenic shortening. In: McClay K (ed) Thrust tectonics and hydrocarbon systems. Am Assoc Petroleum Geologists, Memoir, vol 82(3), pp 30–50

    Google Scholar 

  • Ramos VA, Folguera A, Garcia-Morabito E (2011) Las provincias geológicas del Neuquén. Geología y Recursos Naturales de la Provincia de Neuquén. Relatorio del VXIII Congreso Geológico Argentino, pp 317–326

    Google Scholar 

  • Ranero C, von Huene R, Weinrebe W, Reichert C (2006) Tectonic processes along the chile convergent margin. In: Oncken O, Chong G, Franz G, Giese P, Götze H-J, Ramos VA, Strecker MR, Wigger P (eds) The Andes. Active subduction orogeny. Frontiers in Earth science series. Springer, Berlin, pp 91–121

    Google Scholar 

  • Rapela CW, Pankhurst RJ, Casquet C, Baldo E, Saavedra J, Galindo C, Fanning CM (1998) The Pampean Orogeny of the southern proto-Andes: evidence for Cambrian continental collision in the Sierras de Cordoba. In: Pankhurst RJ, Rapela CW (eds) The proto-Andean Margin of Gondwana. Geol Soc London, Special Publication, vol 142, pp 181–217

    Google Scholar 

  • Reguzzoni M, Sampietro D (2010) An inverse gravimetric problem with GOCE Data, International Association of Geodesy Symposia, Springer-Verlag. Gravity Geoid Earth Obs 135(5):451–456

    Article  Google Scholar 

  • Rosenau M, Melnick D, Echtler H (2006) Kinematic constraints on intra-arc shear and strain partitioning in the southern Andes between 38°S and 42°S latitude. Tectonics 25. doi:10.1029/2005TC001943

    Google Scholar 

  • Rummel R, Yi W, Stummer C (2011) GOCE gravitational gradiometry. J Geodyn 85(11):777–790

    Article  Google Scholar 

  • Sacek V, Ussami N (2009) Reappraisal of the effective elastic thickness for the sub-Andes using 3-d finite element fexural modelling, gravity and geological constraints. Geophys J Int 179(2):778–786

    Article  Google Scholar 

  • Sandwell DT, Smith WHF (1997) Marine gravity anomaly from Geosat and ERS-1 satellite altimetry. J Geophys Res 102:10039–10050

    Article  Google Scholar 

  • Sick C, Yoon MK, Rauch K, Buske S, Lüth S, Araneda M, Bataille K, Chong G, Giese P, Krawczyk C, Mechie J, Meyer H, Oncken O, Reichert C, Schmitz M, Shapiro S, Stiller M, Wigger P (2006) Seismic images of accretive and erosive subduction zones from the chilean margin. In: Oncken O, Chong G, Franz G, Giese P, Götze H-J, Ramos VA, Strecker MR, Wigger P (eds) The Andes. Active subduction orogeny. Frontiers in Earth science series. Springer, Berlin, pp 147–169

    Google Scholar 

  • Stewart J, Watts AB (1997) Gravity anomalies and spatial variations of flexural rigidity at mountain ranges. J Geophys Res 102(B3):5327–5352

    Article  Google Scholar 

  • Tassara A (2005) Interaction between the Nazca and South American plates and formation of the Altiplano-Puna plateau: review of a flexural analysis along the Andean margin (15°–34°S). Tectonophysics 399:39–57

    Article  Google Scholar 

  • Tassara A, Yañez G (2003) Relación entre el espesor elástico de la litósfera y la segmentación tectónica del margen andino (15°–47°S). Rev Geol Chile 30(2):159–186

    Article  Google Scholar 

  • Tassara A, Swain C, Hackney R, Kirby J (2007) Elastic thickness structure of South America estimated using wavelets and satellite-derived gravity data. Earth Planet Sci Lett 253:17–36

    Article  Google Scholar 

  • Tebbens SF, Cande SC (1997) Southeast Pacific tectonic evolution from early Oligocene to present. J Geophys Res 102(B6):12061–12084

    Article  Google Scholar 

  • Tscherning CC (1976) Computation of the second-order derivatives of the normal potential based on the representation by a Legendre series. Manuscripta Geod 1:71–92

    Google Scholar 

  • Turner JCM, Baldis BAJ (1978) La estructura transcontinental del límite septentrional de la Patagonia. VII Congreso Geológico Argentino (Bahía Blanca). Actas 2:225–238

    Google Scholar 

  • Uieda L, Ussami N, Braitenberg CF (2010) Computation of the gravity gradient tensor due to topographic masses using tesseroids. EOS, Trans Am geophys Un 91(26)

    Google Scholar 

  • Uliana MA, Biddle KT, Phelps DW, Gust DA (1985) Significado del vulcanismo y extensión mesojurásicos en el extremo meridional de Sudamérica. Rev Asoc Geol Argent 40(3–4):231–253

    Google Scholar 

  • von Huene R, Corvalán J, Flueh ER, Hinz K, Korstgard J, Ranero CR, Weinrebe W, CONDOR scientists (1997) Tectonic control of the subducting Juan Fernández Ridge on the Andean margin near Valparaiso, Chile. Tectonics 16(3):474–488

    Google Scholar 

  • Watts A (2001) Isostasy and flexure of the Lithosphere: Cambridge University Press, Cambridge, p 458

    Google Scholar 

  • Wells RE, Blakely RJ, Sugiyama Y, Scholl DW, Dinterman PA (2003) Basin centered asperities in great subduction zone earthquakes: a link between slip, subsidence and subduction erosion? J Geophys Res 108(B10):2507–2536

    Article  Google Scholar 

  • Weidmann C, Spagnotto S, Gimenez ME, Martinez P, Alvarez O, Sanchez M, Lince Klinger F (2013) Crustal structure and tectonic setting of the south central Andes from gravimetric analysis. Geofísica Int 52:121–133

    Article  Google Scholar 

  • Wessel P, Smith WHF (1998) New, improved version of the generic mapping tools released. EOS Trans AGU 79(47):579

    Article  Google Scholar 

  • Wienecke S (2006) A new analytical solution for the calculation of flexural rigidity: significance and applications: Unpublished. Ph.D. Thesis. Free University Berlin, p 126

    Google Scholar 

  • Wienecke S, Braitenberg C, Göetze HJ (2007) A new analytical solution estimating the flexural rigidity in the Central Andes. Geophys J Int 169:789–794

    Article  Google Scholar 

  • Windhausen A (1931) Geología Argentina. Geología Histórica y Regional del Territorio Argentino. Editorial J. Peuser, Buenos Aires 2, p 645

    Google Scholar 

  • Yi W, Rummel R (2014) A comparison of GOCE gravitational models with EGM2008. J Geodyn 73:14–22

    Article  Google Scholar 

Download references

Acknowledgements

Authors acknowledge the use of the GMT mapping software of Wessel and Smith (1998) and to Dr. L. Uieda, Dr. J. Janak, Dr. M. Sprlak, and Dr. Prof. C. Braitenberg for their usefull softwares. The authors would like to thank to CONICET and the Ministerio de Ciencia y Técnica–Agencia de Promoción Científica y Tecnológica, PICT07-1903 for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Orlando Álvarez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Álvarez, O., Lince Klinger, F., Gimenez, M., Ruiz, F., Martinez, P. (2016). Density and Thermal Structure of the Southern Andes and Adjacent Foreland from 32° to 55°S Using Earth Gravity Field Models. In: Folguera, A., Naipauer, M., Sagripanti, L., C. Ghiglione, M., Orts, D., Giambiagi, L. (eds) Growth of the Southern Andes. Springer Earth System Sciences. Springer, Cham. https://doi.org/10.1007/978-3-319-23060-3_2

Download citation

Publish with us

Policies and ethics