Skip to main content

Short-term Prediction of MCI to AD Conversion Based on Longitudinal MRI Analysis and Neuropsychological Tests

  • Conference paper
  • First Online:
Innovation in Medicine and Healthcare 2015

Part of the book series: Smart Innovation, Systems and Technologies ((SIST,volume 45))

Abstract

Nowadays, 35 million people worldwide suffer from some form of dementia. Given the increase in life expectancy it is estimated that in 2035 this number will grow to 115 million. Alzheimer’s disease is the most common cause of dementia and it is of great importance diagnose it at an early stage. This is the main goal of this work, the development of a new automatic method to predict the mild cognitive impairment (MCI) patients who will develop Alzheimer’s disease within one year or, conversely, its impairment will remain stable. This technique will analyze data from both magnetic resonance imaging and neuropsychological tests by utilizing a t-test for feature selection, maximum-uncertainty linear discriminant analysis (MLDA) for classification and leave-one-out cross validation (LOOCV) for evaluating the performance of the methods, which achieved a classification accuracy of 73.95 %, with a sensitivity of 72.14 % and a specificity of 73.77 %.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Deskian, R.S., Cabral, H.J., Settecase, F., Hess, C.P., Dillon, W.P., Glastonbury, C.M., Weiner, M.W., Schmansky, N.J., Salat, D.H., Fischl, B., ADNI: Automated MRI measures predict progression to Alzheimer’s disease. Neurobiol. Aging 31(8), 1364–1374 (2010)

    Google Scholar 

  2. Liy, Y., Paajanen, T., Zhang, Y., Westman, E., Wahlund, L.O., Simmons, A., Tunnard, C., Sobow, T., Mecocci, P., Tsolaki, M., Vellas, B., Muehlboeck, S., Evans, A., Spenger, C., Lovestone, S., Soininen, H.: Automated MRI measures predict progression to Alzheimer’s disease. Neurobiol. Aging 31(8) (2010) 1375–1385

    Google Scholar 

  3. Chincarini, A., Bosco, P., Calvini, P., Gemme, G., Esposito, M., Olivieri, C., Rei, L., Squarcia, S., Rodriguez, G., Bellotti, R., Cerello, P., de Mitri, I., Retico, A., Nobili, F.: Local MRI analysis approach in the diagnosis of early and prodromal Alzheimer’s disease. Neuroimage 102(2), 657–665 (2011)

    Google Scholar 

  4. Nazeri, A., Ganjgahi, H., Roostaei, T., Nichols, T., Zarei, M.: Imaging proteomics for diagnosis, monitoring and prediction of Alzheimer’s disease. Neuroimage 58(12), 469–480 (2011)

    Google Scholar 

  5. Zhang, D., Shen, D., ADNI: Predicting future clinical changes of MCI patients using longitudinal and multimodal biomarkers. PLoS One 7(3) (2012)

    Google Scholar 

  6. Apostolova, L.G., Hwang, K.S., Andrawis, J.P., Green, A.E., Babakchanian, S., Morra, J.H., Cummings, J.L., Toga, A.W., Trojanowski, J.Q., Shaw, L.M., Jr., Jack C.R., Jr., Petersen, R.C., Aisen, P.S., Jagust, W.J., Koeppe, R.A., Mathis, C.A., Weiner, M.W., Thompson, P.M.: 3D PIB and CSF biomarker associations with the hippocampal atrophy in ADNI subjects. Neurobiol. Aging 31 (2010) 1284–1303

    Google Scholar 

  7. Fjell, A.M., Walhovd, K.B., Fennema-Notestine, C., McEvoy, L.K., Hagler, D.J., Holland, D., Brewer, J.B., Dale, A.M.: CSF biomarkers in prediction of cerebral and clinical change in mild cognitive impairment and Alzheimer’s disease. J. Neurosci. 30, 2088–2101 (2010)

    Article  Google Scholar 

  8. Cuingnet, R., Gerardin, E., Tessieras, J., Auzias, G., Lehricy, S., Habert, M., Chupin, M., Benali, H., Colliot, O., ADNI: Automatic classification of patients with Alzheimer’s disease from structural MRI: a comparison of ten methods using the ADNI database. Neuroimage 56 (2011) 766–781

    Google Scholar 

  9. Chupin, M., Hammers, A., Liu, R., Colliot, O., Burdett, J., Bardinet, E., Duncan, J., Garnero, L., Lemieux, L.: Automatic segmentation of the hyppocampus and the amygdala driven by hybrid constraints: method and validation. Neuroimage 46(3), 749–761 (2009a)

    Article  Google Scholar 

  10. Geradin, R., Chtelat, G., Chupin, M., Cuingnet, R., Desgranges, B., Kim, H.S., Niethammer, M., Dubois, B., Lehricy, S., Garnero, L., Francis, E., Colliot, O.: Multidimensional classification of hippocampal shape features discriminates alzheimer’s disease ang mild cognitive impairment from normal aging. Neuroimage 47(4) (2009) 1476–1486

    Google Scholar 

  11. Magnin, B., Mesrob, L., Kinkingnéhun, S., Pélégrini-Isaac, M., Colliot, O., Sarazin, M., Dubois, B., Lehéricy, B., Benali, H.: Support vector machine-based classification of Alzheimer’s disease from whole-brain anatomical mri. Neuroradiology 51(2), 73–83 (2009)

    Article  Google Scholar 

  12. Tzourio-Mayer, N., Landeau, B., Papathanassiou, D., Crivello, F., Etard, O., Delcroix, N., Mazoyer, B., Joliot, M.: Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage 15, 273–289 (2002)

    Article  Google Scholar 

  13. Yan, J., Li, T., Wang, H., Huand, H., Wan, J., Nho, K., Kim, S., Risacher, S., Saykin, A.J., Shen, L.: Cortical surface biomarkers for predicting cognitive outcomes using group l2,1 norm. Neurobiol. Aging 36(1), S185–S193 (2015)

    Article  Google Scholar 

  14. Raymer, M.L., Punch, W.F., Goodman, E.D., Kuhn, L.A., Jain, A.K.: Dimensionality reduction using genetic algorithms. IEEE Trans. Evolut. Comput. 4(2), 164–171 (2002)

    Article  Google Scholar 

  15. Cui, X., Beaver, J.M., Charles, J.S., Potok, T.E.: Dimensionality reduction particle swarn algorithm for high dimensional clustering. In: IEEE Swarm Intelligence Symposium, vol. 1, pp. 1–6 (2008)

    Google Scholar 

  16. Salcedo-Sanz, S., Pastor-Snchez, A., Prieto, L., Blanco-Aguilera, A., Garca-Herrera, R.: Feature selection in wind speed prediction systems based on a hybrid coral reefs optimization—extreme learning machine approach. Energy Convers. Manag. 87, 10–18 (2014)

    Google Scholar 

  17. Jolliffe, I.T.: Principal Component Analysis, 2nd edn. Springer (1973)

    Google Scholar 

  18. Hyvärinen, A.: Fast and robust fixex-point algorithms for independent component analysis. IEEE Trans. Neural Netw. 10, 626–634 (1999)

    Article  Google Scholar 

  19. Álvarez, I., Górriz, J.M., Ramírez, J., Salas, D., López, M., Puntonet, C., Segovia, F.: Independent component analysis of spect images to assist the Alzhimer’s disease diagnosis. In: The Sixth International Symposium on Neural Networks (ISSN 2009). Advances in Intelligent Soft Computing, vol. 56, pp. 411–419 (2009)

    Google Scholar 

  20. Dai, Z., Yan, C., Wang, Z., Wang, J., Xia, M., Li, K., He, Y.: Discriminative analysis of early Alzheimer’s disease using multi-modal imaging and multi-level characterization with multi-classifier (m3). Neuroimage 59(3), 2187–2195 (2012)

    Article  Google Scholar 

  21. Welling, M.: Fisher Linear Discriminant Analysis. http://www.ics.uci.edu/~welling/classnotes/papers_class/Fisher-LDA.pdf (2010)

  22. Thomaz, C., Boardman, J., Hil, D., Hajnal, J.V., Edwards, A., Rutherford, M., Gillies, D., Ruckert, D.: Whole brain voxel-based analysis using registration and multivariate statistics. In: Proceedings of the 8th Medical Image Understanding Analysis (MIUA’04), vol. 1, pp. 73–76 (2004)

    Google Scholar 

  23. Rao, R.B., Fung, G.: On the dangers of cross-validation. An experimental evaluation. Siemens Medical Solutions, 588–596 (2008)

    Google Scholar 

  24. Hanley, J.A., McNeill, B.J.: The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology 143(1), 29–36 (1982)

    Article  Google Scholar 

Download references

Acknowledgments

This work was partly supported by the MICINN under the TEC2012-34306 project and the Consejería de Innovación, Ciencia y Empresa (Junta de Andalucía, Spain) under the Excellence Project P11-TIC-7103.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Eloy Arco .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Arco, J.E., Ramírez, J., Górriz, J.M., Puntonet, C.G., Ruz, M. (2016). Short-term Prediction of MCI to AD Conversion Based on Longitudinal MRI Analysis and Neuropsychological Tests. In: Chen, YW., Torro, C., Tanaka, S., Howlett, R., C. Jain, L. (eds) Innovation in Medicine and Healthcare 2015. Smart Innovation, Systems and Technologies, vol 45. Springer, Cham. https://doi.org/10.1007/978-3-319-23024-5_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-23024-5_35

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-23023-8

  • Online ISBN: 978-3-319-23024-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics