Skip to main content

The Gut Microbiome and Cirrhosis: Basic Aspects

  • Conference paper
Portal Hypertension VI

Abstract

In this chapter the basic aspects helping to understand the microbiome in terms of quantity, diversity, complexity, function, and interaction with the host are discussed. First the nomenclature, definitions of taxa, and measures of diversity as well as methods to unravel this kingdom are outlined. A brief summary on its physiological relevance for general health and the functions exerted specifically by the microbiome is presented. Differences in the composition of the microbiome along the gastrointestinal tract and across the gut wall and its interindividual variations, enterotypes, and stability are highlighted. The reader will be familiarized with all different modulators impacting on the microbiome, namely, intrinsic and extrinsic factors. Intrinsic factors include gastrointestinal secretions (gastric acid, bile, pancreatic juice, mucus), antimicrobial peptides, motility, enteric nervous system, and host genotype. Extrinsic factors are mainly dietary choices, hygiene, stress, alcohol consumption, exercise, and medications. The second part of the chapter focuses on quantitative and qualitative changes in microbiome in liver cirrhosis. The mechanisms contributing to dysbiosis, small intestinal bacterial overgrowth, and bacterial translocation are delineated underscoring their role for the liver-gut axis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AMP:

Antimicrobial peptide

BSH:

Bile salt hydrolase

BT:

Bacterial translocation

CFU:

Colony forming units

FXR:

Farnesoid X receptor

GI:

Gastrointestinal

HFD:

High-fat diet

HIP/PAP:

Hepatocarcinoma-intestine-pancreas/pancreatic-associated protein

HT:

Hydroxyl-tryptamine

NE:

Norepinephrine

SIBO:

Small intestinal bacterial overgrowth

References

  1. Human Microbiome Project Consortium (2012) Structure, function and diversity of the healthy human microbiome. Nature 486(7402):207–214

    Article  CAS  Google Scholar 

  2. Schnabl B, Brenner DA (2014) Interactions between the intestinal microbiome and liver diseases. Gastroenterology 146(6):1513–1524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Yoshimoto S, Loo TM, Atarashi K, Kanda H, Sato S, Oyadomari S et al (2013) Obesity-induced gut microbial metabolite promotes liver cancer through senescence secretome. Nature 499(7456):97–101

    Article  CAS  PubMed  Google Scholar 

  4. Hirsch BE, Saraiya N, Poeth K, Schwartz RM, Epstein ME, Honig G (2015) Effectiveness of fecal-derived microbiota transfer using orally administered capsules for recurrent clostridium difficile infection. BMC Infect Dis 15(1):191

    Article  PubMed  PubMed Central  Google Scholar 

  5. Kostic AD, Xavier RJ, Gevers D (2014) The microbiome in inflammatory bowel disease: current status and the future ahead. Gastroenterology 146(6):1489–1499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Collins SM (2014) A role for the gut microbiota in IBS. Nat Rev Gastroenterol Hepatol 11(8):497–505

    Article  CAS  PubMed  Google Scholar 

  7. Carding S, Verbeke K, Vipond DT, Corfe BM, Owen LJ (2015) Dysbiosis of the gut microbiota in disease. Microb Ecol Health Dis 26:26191. doi:10.3402/mehd.v26.26191. eCollection;%2015.:26191

    PubMed  Google Scholar 

  8. Ivanov WHJ II, Darce J, Hattori K, Shima T, Umesaki Y et al (2010) Gut-residing segmented filamentous bacteria drive autoimmune arthritis via T helper 17 cells. Immunity 32(6):815–827

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Lee YK, Menezes JS, Umesaki Y, Mazmanian SK (2011) Proinflammatory T-cell responses to gut microbiota promote experimental autoimmune encephalomyelitis. Proc Natl Acad Sci U S A 108 Suppl 1:4615–4622. doi:10.1073/pnas.1000082107. Epub;%2010 Jul 26.:4615–4622

    Google Scholar 

  10. Finegold SM (2011) State of the art; microbiology in health and disease. Intestinal bacterial flora in autism. Anaerobe 17(6):367–368

    Article  PubMed  Google Scholar 

  11. Park AJ, Collins J, Blennerhassett PA, Ghia JE, Verdu EF, Bercik P et al (2013) Altered colonic function and microbiota profile in a mouse model of chronic depression. Neurogastroenterol Motil 25(9):733–e575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Tang WH, Hazen SL (2014) The contributory role of gut microbiota in cardiovascular disease. J Clin Invest 124(10):4204–4211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wang D, Ho L, Faith J, Ono K, Janle EM, Lachcik PJ et al (2015) Role of intestinal microbiota in the generation of polyphenol derived phenolic acid mediated attenuation of Alzheimer’s disease beta-amyloid oligomerization. Mol Nutr Food Res 17:10

    CAS  Google Scholar 

  14. Nieuwdorp M, Gilijamse PW, Pai N, Kaplan LM (2014) Role of the microbiome in energy regulation and metabolism. Gastroenterology 146(6):1525–1533

    Article  CAS  PubMed  Google Scholar 

  15. Shapiro H, Thaiss CA, Levy M, Elinav E (2014) The cross talk between microbiota and the immune system: metabolites take center stage. Curr Opin Immunol 30:54–62. doi:10.1016/j.coi.2014.07.003. Epub;%2014 Jul 26.:54–62

    Google Scholar 

  16. Carmody RN, Turnbaugh PJ (2014) Host-microbial interactions in the metabolism of therapeutic and diet-derived xenobiotics. J Clin Invest 124(10):4173–4181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Sassone-Corsi M, Raffatellu M (2015) No vacancy: how beneficial microbes cooperate with immunity to provide colonization resistance to pathogens. J Immunol 194(9):4081–4087

    Article  CAS  PubMed  Google Scholar 

  18. Macpherson AJ, Hapfelmeier S, McCoy KD (2007) The armed truce between the intestinal microflora and host mucosal immunity. Semin Immunol 19(2):57–58

    Article  CAS  PubMed  Google Scholar 

  19. Forsythe P, Kunze WA, Bienenstock J (2012) On communication between gut microbes and the brain. Curr Opin Gastroenterol 28(6):557–562

    Article  PubMed  Google Scholar 

  20. Arumugam M, Raes J, Pelletier E, Le PD, Yamada T, Mende DR et al (2011) Enterotypes of the human gut microbiome. Nature 473(7346):174–180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Human Microbiome Project Consortium (2012) A framework for human microbiome research. Nature 486(7402):215–221

    Article  CAS  Google Scholar 

  22. Faith JJ (2015) Bridging the knowledge gap: from microbiome composition to function. Mol Syst Biol 11(3):793. doi:10.15252/msb.20156045.:793

    Article  CAS  Google Scholar 

  23. King CE, Toskes PP (1979) Small intestine bacterial overgrowth. Gastroenterology 76(5 Pt 1):1035–1055

    CAS  PubMed  Google Scholar 

  24. Zoetendal EG, von Wright A, Vilpponen-Salmela T, Ben Amor K, Akkermans AD, de Vos WM (2002) Mucosa-associated bacteria in the human gastrointestinal tract are uniformly distributed along the colon and differ from the community recovered from feces. Appl Environ Microbiol 68(7):3401–3407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sonnenburg JL, Xu J, Leip DD, Chen CH, Westover BP, Weatherford J et al (2005) Glycan foraging in vivo by an intestine-adapted bacterial symbiont. Science 307(5717):1955–1959

    Article  CAS  PubMed  Google Scholar 

  26. Wu GD, Chen J, Hoffmann C, Bittinger K, Chen YY, Keilbaugh SA et al (2011) Linking long-term dietary patterns with gut microbial enterotypes. Science 334(6052):105–108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hamilton MK, Boudry G, Lemay DG, Raybould HE (2015) Changes in intestinal barrier function and gut microbiota in high-fat diet fed rats are dynamic and region-dependent. Am J Physiol Gastrointest Liver Physiol 308(10):G840–G851

    Article  CAS  PubMed  Google Scholar 

  28. Albenberg LG, Wu GD (2014) Diet and the intestinal microbiome: associations, functions, and implications for health and disease. Gastroenterology 146(6):1564–1572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Tremaroli V, Backhed F (2012) Functional interactions between the gut microbiota and host metabolism. Nature 489(7415):242–249

    Article  CAS  PubMed  Google Scholar 

  30. Suez J, Korem T, Zeevi D, Zilberman-Schapira G, Thaiss CA, Maza O et al (2014) Artificial sweeteners induce glucose intolerance by altering the gut microbiota. Nature 514(7521):181–186

    CAS  PubMed  Google Scholar 

  31. Chassaing B, Koren O, Goodrich JK, Poole AC, Srinivasan S, Ley RE et al (2015) Dietary emulsifiers impact the mouse gut microbiota promoting colitis and metabolic syndrome. Nature 519(7541):92–96

    Article  CAS  PubMed  Google Scholar 

  32. Crawford PA, Crowley JR, Sambandam N, Muegge BD, Costello EK, Hamady M et al (2009) Regulation of myocardial ketone body metabolism by the gut microbiota during nutrient deprivation. Proc Natl Acad Sci U S A 106(27):11276–11281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Smith MI, Yatsunenko T, Manary MJ, Trehan I, Mkakosya R, Cheng J et al (2013) Gut microbiomes of Malawian twin pairs discordant for kwashiorkor. Science 339(6119):548–554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Faith JJ, McNulty NP, Rey FE, Gordon JI (2011) Predicting a human gut microbiota’s response to diet in gnotobiotic mice. Science 333(6038):101–104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lax S, Smith DP, Hampton-Marcell J, Owens SM, Handley KM, Scott NM et al (2014) Longitudinal analysis of microbial interaction between humans and the indoor environment. Science 345(6200):1048–1052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Perez-Cobas AE, Gosalbes MJ, Friedrichs A, Knecht H, Artacho A, Eismann K et al (2013) Gut microbiota disturbance during antibiotic therapy: a multi-omic approach. Gut 62(11):1591–1601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Freedberg DE, Lebwohl B, Abrams JA (2014) The impact of proton pump inhibitors on the human gastrointestinal microbiome. Clin Lab Med 34(4):771–785

    Article  PubMed  PubMed Central  Google Scholar 

  38. Konturek PC, Brzozowski T, Konturek SJ (2011) Stress and the gut: pathophysiology, clinical consequences, diagnostic approach and treatment options. J Physiol Pharmacol 62(6):591–599

    CAS  PubMed  Google Scholar 

  39. Lundgren O (2000) Sympathetic input into the enteric nervous system. Gut 47(Suppl 4):iv33–iv35; discussion iv36.:iv33–iv35

    PubMed  PubMed Central  Google Scholar 

  40. McIntyre AS, Thompson DG (1992) Review article: adrenergic control of motor and secretory function in the gastrointestinal tract. Aliment Pharmacol Ther 6(2):125–142

    Article  CAS  PubMed  Google Scholar 

  41. Asano Y, Hiramoto T, Nishino R, Aiba Y, Kimura T, Yoshihara K et al (2012) Critical role of gut microbiota in the production of biologically active, free catecholamines in the gut lumen of mice. Am J Physiol Gastrointest Liver Physiol 303(11):G1288–G1295

    Article  CAS  PubMed  Google Scholar 

  42. Lyte M, Ernst S (1992) Catecholamine induced growth of gram negative bacteria. Life Sci 50(3):203–212

    Article  CAS  PubMed  Google Scholar 

  43. Bansal T, Englert D, Lee J, Hegde M, Wood TK, Jayaraman A (2007) Differential effects of epinephrine, norepinephrine, and indole on escherichia coli O157:H7 chemotaxis, colonization, and gene expression. Infect Immun 75(9):4597–4607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kamada N, Kao JY (2013) The tuning of the gut nervous system by commensal microbiota. Gastroenterology 145(6):1193–1196

    Article  PubMed  PubMed Central  Google Scholar 

  45. Mukherjee S, Partch CL, Lehotzky RE, Whitham CV, Chu H, Bevins CL et al (2009) Regulation of C-type lectin antimicrobial activity by a flexible N-terminal prosegment. J Biol Chem 284(8):4881–4888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Mukherjee S, Hooper LV (2015) Antimicrobial defense of the intestine. Immunity 42(1):28–39

    Article  CAS  PubMed  Google Scholar 

  47. Cullen TW, Schofield WB, Barry NA, Putnam EE, Rundell EA, Trent MS et al (2015) Gut microbiota. Antimicrobial peptide resistance mediates resilience of prominent gut commensals during inflammation. Science 347(6218):170–175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Mukherjee S, Zheng H, Derebe MG, Callenberg KM, Partch CL, Rollins D et al (2014) Antibacterial membrane attack by a pore-forming intestinal C-type lectin. Nature 505(7481):103–107

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Wehkamp J, Chu H, Shen B, Feathers RW, Kays RJ, Lee SK et al (2006) Paneth cell antimicrobial peptides: topographical distribution and quantification in human gastrointestinal tissues. FEBS Lett 580(22):5344–5350

    Article  CAS  PubMed  Google Scholar 

  50. Qu XD, Lloyd KC, Walsh JH, Lehrer RI (1996) Secretion of type II phospholipase A2 and cryptdin by rat small intestinal paneth cells. Infect Immun 64(12):5161–5165

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Schroeder BO, Wu Z, Nuding S, Groscurth S, Marcinowski M, Beisner J et al (2011) Reduction of disulphide bonds unmasks potent antimicrobial activity of human beta-defensin 1. Nature 469(7330):419–423

    Article  CAS  PubMed  Google Scholar 

  52. Aranow JS, Fink MP (1996) Determinants of intestinal barrier failure in critical illness. Br J Anaesth 77(1):71–81

    Article  CAS  PubMed  Google Scholar 

  53. Hansson GC (2012) Role of mucus layers in gut infection and inflammation. Curr Opin Microbiol 15(1):57–62

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Kim YS, Ho SB (2010) Intestinal goblet cells and mucins in health and disease: recent insights and progress. Curr Gastroenterol Rep 12(5):319–330

    Article  PubMed  PubMed Central  Google Scholar 

  55. Meyer-Hoffert U, Hornef MW, Henriques-Normark B, Axelsson LG, Midtvedt T, Putsep K et al (2008) Secreted enteric antimicrobial activity localises to the mucus surface layer. Gut 57(6):764–771

    Article  CAS  PubMed  Google Scholar 

  56. Johansson ME, Phillipson M, Petersson J, Velcich A, Holm L, Hansson GC (2008) The inner of the two Muc2 mucin-dependent mucus layers in colon is devoid of bacteria. Proc Natl Acad Sci U S A 105(39):15064–15069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Johansson ME, Larsson JM, Hansson GC (2011) The two mucus layers of colon are organized by the MUC2 mucin, whereas the outer layer is a legislator of host-microbial interactions. Proc Natl Acad Sci U S A 108(Suppl 1):4659–4665, Epub;%2010 Jun 25.:4659–4665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Kline KA, Falker S, Dahlberg S, Normark S, Henriques-Normark B (2009) Bacterial adhesins in host-microbe interactions. Cell Host Microbe 5(6):580–592

    Article  CAS  PubMed  Google Scholar 

  59. Dubos R, Schaedler RW, Costello R, Hoet P (1965) Indigenous, normal, and autochthonous flora of the gastrointestinal tract. J Exp Med 122:67–76

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Gadaleta RM, van Erpecum KJ, Oldenburg B, Willemsen EC, Renooij W, Murzilli S et al (2011) Farnesoid X receptor activation inhibits inflammation and preserves the intestinal barrier in inflammatory bowel disease. Gut 60(4):463–472

    Article  CAS  PubMed  Google Scholar 

  61. Ridlon JM, Kang DJ, Hylemon PB (2006) Bile salt biotransformations by human intestinal bacteria. J Lipid Res 47(2):241–259

    Article  CAS  PubMed  Google Scholar 

  62. Joyce SA, MacSharry J, Casey PG, Kinsella M, Murphy EF, Shanahan F et al (2014) Regulation of host weight gain and lipid metabolism by bacterial bile acid modification in the gut. Proc Natl Acad Sci U S A 111(20):7421–7426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Li F, Jiang C, Krausz KW, Li Y, Albert I, Hao H et al (2013) Microbiome remodelling leads to inhibition of intestinal farnesoid X receptor signalling and decreased obesity. Nat Commun 4:2384. doi:10.1038/ncomms3384.:2384

    PubMed  Google Scholar 

  64. Islam KB, Fukiya S, Hagio M, Fujii N, Ishizuka S, Ooka T et al (2011) Bile acid is a host factor that regulates the composition of the cecal microbiota in rats. Gastroenterology 141(5):1773–1781

    Article  CAS  PubMed  Google Scholar 

  65. Ridlon JM, Kang DJ, Hylemon PB, Bajaj JS (2014) Bile acids and the gut microbiome. Curr Opin Gastroenterol 30(3):332–338

    Article  PubMed  PubMed Central  Google Scholar 

  66. Inagaki T, Moschetta A, Lee YK, Peng L, Zhao G, Downes M et al (2006) Regulation of antibacterial defense in the small intestine by the nuclear bile acid receptor. Proc Natl Acad Sci U S A 103(10):3920–3925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Floch MH, Gershengoren W, Elliott S, Spiro HM (1971) Bile acid inhibition of the intestinal microflora--a function for simple bile acids? Gastroenterology 61(2):228–233

    CAS  PubMed  Google Scholar 

  68. Yan AW, Fouts DE, Brandl J, Starkel P, Torralba M, Schott E et al (2011) Enteric dysbiosis associated with a mouse model of alcoholic liver disease. Hepatology 53(1):96–105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Wells CL, Jechorek RP, Erlandsen SL (1995) Inhibitory effect of bile on bacterial invasion of enterocytes: possible mechanism for increased translocation associated with obstructive jaundice. Crit Care Med 23:301–307

    Article  CAS  PubMed  Google Scholar 

  70. Bertok L (1977) Physico-chemical defense of vertebrate organisms: the role of bile acids in defense against bacterial endotoxins. Perspect Biol Med 21:70–76

    Article  CAS  PubMed  Google Scholar 

  71. Van Bossuyt H, Desmaretz C, Gaeta GB, Wisse E (1990) The role of bile acids in the development of endotoxemia during obstructive jaundice in the rat. J Hepatol 10:274–279

    Article  PubMed  Google Scholar 

  72. Denou E, Lolmede K, Garidou L, Pomie C, Chabo C, Lau TC et al (2015) Defective NOD2 peptidoglycan sensing promotes diet-induced inflammation, dysbiosis, and insulin resistance. EMBO Mol Med 7(3):259–274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Olivares M, Neef A, Castillejo G, Palma GD, Varea V, Capilla A et al (2015) The HLA-DQ2 genotype selects for early intestinal microbiota composition in infants at high risk of developing coeliac disease. Gut 64(3):406–417

    Article  CAS  PubMed  Google Scholar 

  74. Egger G, Kessler JI (1973) Clinical experience with a simple test for the detection of bacterial deconjugation of bile salts and the site and extent of bacterial overgrowth in the small intestine. Gastroenterology 64(4):545–551

    CAS  PubMed  Google Scholar 

  75. Brun P, Giron MC, Qesari M, Porzionato A, Caputi V, Zoppellaro C et al (2013) Toll-like receptor 2 regulates intestinal inflammation by controlling integrity of the enteric nervous system. Gastroenterology 145(6):1323–1333

    Article  CAS  PubMed  Google Scholar 

  76. Anitha M, Vijay-Kumar M, Sitaraman SV, Gewirtz AT, Srinivasan S (2012) Gut microbial products regulate murine gastrointestinal motility via toll-like receptor 4 signaling. Gastroenterology 143(4):1006–1016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Barbara G, Stanghellini V, Brandi G, Cremon C, Di NG, De GR et al (2005) Interactions between commensal bacteria and gut sensorimotor function in health and disease. Am J Gastroenterol 100(11):2560–2568

    Article  CAS  PubMed  Google Scholar 

  78. Yano JM, Yu K, Donaldson GP, Shastri GG, Ann P, Ma L et al (2015) Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis. Cell 161(2):264–276

    Article  CAS  PubMed  Google Scholar 

  79. Mazagova M, Wang L, Anfora AT, Wissmueller M, Lesley SA, Miyamoto Y et al (2015) Commensal microbiota is hepatoprotective and prevents liver fibrosis in mice. FASEB J 29(3):1043–1055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Moghadamrad S, McCoy KD, Geuking MB, Sagesser H, Kirundi J, Macpherson AJ et al (2015) Attenuated portal hypertension in germ-free mice: function of bacterial flora on the development of mesenteric lymphatic and blood vessels. Hepatology 61(5):1685–1695

    Article  CAS  PubMed  Google Scholar 

  81. Chen Y, Yang F, Lu H, Wang B, Chen Y, Lei D et al (2011) Characterization of fecal microbial communities in patients with liver cirrhosis. Hepatology 54(2):562–572

    Article  PubMed  Google Scholar 

  82. Qin N, Yang F, Li A, Prifti E, Chen Y, Shao L et al (2014) Alterations of the human gut microbiome in liver cirrhosis. Nature 513(7516):59–64

    Article  CAS  PubMed  Google Scholar 

  83. Yan AW, Schnabl B (2012) Bacterial translocation and changes in the intestinal microbiome associated with alcoholic liver disease. World J Hepatol 4(4):110–118

    Article  PubMed  PubMed Central  Google Scholar 

  84. Bull-Otterson L, Feng W, Kirpich I, Wang Y, Qin X, Liu Y et al (2013) Metagenomic analyses of alcohol induced pathogenic alterations in the intestinal microbiome and the effect of lactobacillus rhamnosus GG treatment. PLoS One 8(1):e53028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Kanno T, Matsuki T, Oka M, Utsunomiya H, Inada K, Magari H et al (2009) Gastric acid reduction leads to an alteration in lower intestinal microflora. Biochem Biophys Res Commun 381(4):666–670

    Article  CAS  PubMed  Google Scholar 

  86. Bajaj JS, Cox IJ, Betrapally NS, Heuman DM, Schubert ML, Ratneswaran M et al (2014) Systems biology analysis of omeprazole therapy in cirrhosis demonstrates significant shifts in gut microbiota composition and function. Am J Physiol Gastrointest Liver Physiol 307(10):G951–G957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Merli M, Lucidi C, Di G, Giannelli V, Giusto M, Ceccarelli G et al (2015) The chronic use of beta-blockers and proton pump inhibitors may affect the rate of bacterial infections in cirrhosis. Liver Int 35(2):362–369

    Article  PubMed  Google Scholar 

  88. Bajaj JS, Ratliff SM, Heuman DM, Lapane KL (2012) Proton pump inhibitors are associated with a high rate of serious infections in veterans with decompensated cirrhosis. Aliment Pharmacol Ther 36(9):866–874

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Dietrich P, Moleda L, Kees F, Muller M, Straub RH, Hellerbrand C et al (2013) Dysbalance in sympathetic neurotransmitter release and action in cirrhotic rats: impact of exogenous neuropeptide Y. J Hepatol 58(2):254–261

    Article  CAS  PubMed  Google Scholar 

  90. Worlicek M, Knebel K, Linde HJ, Moleda L, Scholmerich J, Straub RH et al (2010) Splanchnic sympathectomy prevents translocation and spreading of E coli but not S aureus in liver cirrhosis. Gut 59(8):1127–1134

    Article  CAS  PubMed  Google Scholar 

  91. Perez-Paramo M, Munoz J, Albillos A, Freile I, Portero F, Santos M et al (2000) Effect of propranolol on the factors promoting bacterial translocation in cirrhotic rats with ascites. Hepatology 31(1):43–48

    Article  CAS  PubMed  Google Scholar 

  92. Freestone PP, Williams PH, Haigh RD, Maggs AF, Neal CP, Lyte M (2002) Growth stimulation of intestinal commensal escherichia coli by catecholamines: a possible contributory factor in trauma-induced sepsis. Shock 18(5):465–470

    Article  PubMed  Google Scholar 

  93. Reiberger T, Ferlitsch A, Payer B, Mandorfer M, Heinisch B, Hayden H et al (2013) Nonselective beta-blocker therapy decreases intestinal permeability and serum levels of LBP and IL6 in patients with cirrhosis. J Hepatol 58(5):911–921

    Article  CAS  PubMed  Google Scholar 

  94. Senzolo M, Fries W, Buda A, Pizzuti D, Nadal E, Sturniolo GC et al (2009) Oral propranolol decreases intestinal permeability in patients with cirrhosis: another protective mechanism against bleeding? Am J Gastroenterol 104(12):3115–3116

    Article  CAS  PubMed  Google Scholar 

  95. Senzolo M, Cholongitas E, Marelli L, Thalheimer U, Patch D, Burroughs AK (2006) The low incidence of bacterial infections could be a protective factor against variceal bleeding per se in hemodynamic responders to propranolol. Am J Gastroenterol 101(10):2436–2437

    Article  PubMed  Google Scholar 

  96. Ridlon JM, Alves JM, Hylemon PB, Bajaj JS (2013) Cirrhosis, bile acids and gut microbiota: unraveling a complex relationship. Gut Microbes 4(5):382–387

    Article  PubMed  PubMed Central  Google Scholar 

  97. Kakiyama G, Pandak WM, Gillevet PM, Hylemon PB, Heuman DM, Daita K et al (2013) Modulation of the fecal bile acid profile by gut microbiota in cirrhosis. J Hepatol 58(5):949–955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Begley M, Gahan CG, Hill C (2005) The interaction between bacteria and bile. FEMS Microbiol Rev 29(4):625–651

    Article  CAS  PubMed  Google Scholar 

  99. Lorenzo-Zuniga V, Bartoli R, Planas R, Hofmann AF, Vinado B, Hagey LR et al (2003) Oral bile acids reduce bacterial overgrowth, bacterial translocation, and endotoxemia in cirrhotic rats. Hepatology 37(3):551–557

    Article  CAS  PubMed  Google Scholar 

  100. Verbeke L, Farre R, Verbinnen B, Covens K, Vanuytsel T, Verhaegen J et al (2015) The FXR agonist obeticholic acid prevents gut barrier dysfunction and bacterial translocation in cholestatic rats. Am J Pathol 185(2):409–419

    Article  CAS  PubMed  Google Scholar 

  101. Verbeke L, Farre R, Trebicka J, Komuta M, Roskams T, Klein S et al (2014) Obeticholic acid, a farnesoid X receptor agonist, improves portal hypertension by two distinct pathways in cirrhotic rats. Hepatology 59(6):2286–2298

    Article  CAS  PubMed  Google Scholar 

  102. Lutz P, Berger C, Langhans B, Grunhage F, Appenrodt B, Nattermann J et al (2014) A farnesoid X receptor polymorphism predisposes to spontaneous bacterial peritonitis. Dig Liver Dis 46(11):1047–1050

    Article  CAS  PubMed  Google Scholar 

  103. Appenrodt B, Grunhage F, Gentemann MG, Thyssen L, Sauerbruch T, Lammert F (2010) Nucleotide-binding oligomerization domain containing 2 (NOD2) variants are genetic risk factors for death and spontaneous bacterial peritonitis in liver cirrhosis. Hepatology 51(4):1327–1333

    Article  CAS  PubMed  Google Scholar 

  104. Bruns T, Peter J, Reuken PA, Grabe DH, Schuldes SR, Brenmoehl J et al (2012) NOD2 gene variants are a risk factor for culture-positive spontaneous bacterial peritonitis and monomicrobial bacterascites in cirrhosis. Liver Int 32(2):223–230

    Article  CAS  PubMed  Google Scholar 

  105. Chesta J, Defilippi C, Defilippi C (1993) Abnormalities in proximal small bowel motility in patients with cirrhosis. Hepatology 17(5):828–832

    CAS  PubMed  Google Scholar 

  106. Madrid AM, Hurtado C, Venegas M, Cumsille F, Defilippi C (2001) Long-term treatment with cisapride and antibiotics in liver cirrhosis: effect on small intestinal motility, bacterial overgrowth, and liver function. Am J Gastroenterol 96(4):1251–1255

    Article  CAS  PubMed  Google Scholar 

  107. Chander RB, Garcia-Tsao G, Ciarleglio MM, Deng Y, Sheth A (2013) Decompensated cirrhotics have slower intestinal transit times as compared with compensated cirrhotics and healthy controls. J Clin Gastroenterol 47(10):888–893

    Article  Google Scholar 

  108. Chang CS, Chen GH, Lien HC, Yeh HZ (1998) Small intestine dysmotility and bacterial overgrowth in cirrhotic patients with spontaneous bacterial peritonitis. Hepatology 28(5):1187–1190

    Article  CAS  PubMed  Google Scholar 

  109. Sandhu BS, Gupta R, Sharma J, Singh J, Murthy NS, Sarin SK (2005) Norfloxacin and cisapride combination decreases the incidence of spontaneous bacterial peritonitis in cirrhotic ascites. J Gastroenterol Hepatol 20(4):599–605

    Article  CAS  PubMed  Google Scholar 

  110. Bauer TM, Steinbruckner B, Brinkmann FE, Ditzen AK, Schwacha H, Aponte JJ et al (2001) Small intestinal bacterial overgrowth in patients with cirrhosis: prevalence and relation with spontaneous bacterial peritonitis. Am J Gastroenterol 96(10):2962–2967

    Article  CAS  PubMed  Google Scholar 

  111. Bauer TM, Schwacha H, Steinbrückner B, Brinkmann FE, Ditzen AK, Aponte JJ et al (2002) Small intestinal bacterial overgrowth in human cirrhosis is associated with systemic endotoxemia. Am J Gastroenterol 97:2364–2370

    Article  PubMed  Google Scholar 

  112. Bode JC, Bode C, Heidelbach R, Durr HK, Martini GA (1984) Jejunal microflora in patients with chronic alcohol abuse. Hepatogastroenterology 31(1):30–34

    CAS  PubMed  Google Scholar 

  113. Chesta JSMTLDCEDC (1991) Small intestinal bacterial overgrowth in patients with hepatic cirrhosis. Rev Med Chil 119:626–632

    CAS  PubMed  Google Scholar 

  114. Pardo A, Bartoli R, Lorenzo-Zuniga V, Planas R, Vinado B, Riba J et al (2000) Effect of cisapride on intestinal bacterial overgrowth and bacterial translocation in cirrhosis. Hepatology 31(4):858–863

    Article  CAS  PubMed  Google Scholar 

  115. Morencos FC, las Heras CG, Martin RL, Lopez Arias MJ, Ledesma F, Pons RF (1995) Small bowel bacterial overgrowth in patients with alcoholic cirrhosis. Dig Dis Sci 40(6):1252–1256

    Article  CAS  PubMed  Google Scholar 

  116. Yang CY, Chang CS, Chen GH (1998) Small-intestinal bacterial overgrowth in patients with liver cirrhosis, diagnosed with glucose H2 or CH4 breath tests. Scand J Gastroenterol 33(8):867–871

    Article  CAS  PubMed  Google Scholar 

  117. Chang CS, Yang SS, Kao CH, Yeh HZ, Chen GH (2001) Small intestinal bacterial overgrowth versus antimicrobial capacity in patients with spontaneous bacterial peritonitis. Scand J Gastroenterol 36(1):92–96

    Article  CAS  PubMed  Google Scholar 

  118. Jun DW, Kim KT, Lee OY, Chae JD, Son BK, Kim SH et al (2010) Association between small intestinal bacterial overgrowth and peripheral bacterial DNA in cirrhotic patients. Dig Dis Sci 55(5):1465–1471

    Article  CAS  PubMed  Google Scholar 

  119. Guarner C, Runyon BA, Young S, Heck M, Sheikh MY (1997) Intestinal bacterial overgrowth and bacterial translocation in cirrhotic rats with ascites. J Hepatol 26(6):1372–1378

    Article  CAS  PubMed  Google Scholar 

  120. Steffen EK, Berg RD (1983) Relationship between cecal population levels of indigenous bacteria and translocation to the mesenteric lymph nodes. Infect Immun 39(3):1252–1259

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Sadik R, Abrahamsson H, Björnsson E, Gunnarsdottir A, Stotzer PO (2003) Etiology of portal hypertension may influence gastrointestinal transit. Scand J Gastroenterol 38(10):1039–1044

    Article  CAS  PubMed  Google Scholar 

  122. Fried M, Siegrist H, Frei R, Froehlich F, Duroux P, Thorens J et al (1994) Duodenal bacterial overgrowth during treatment in outpatients with omeprazole. Gut 35(1):23–26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Bajaj JS, Zadvornova Y, Heuman DM, Hafeezullah M, Hoffmann RG, Sanyal AJ et al (2009) Association of proton pump inhibitor therapy with spontaneous bacterial peritonitis in cirrhotic patients with ascites. Am J Gastroenterol 104(5):1130–1134

    Article  CAS  PubMed  Google Scholar 

  124. Shindo K, Machida M, Miyakawa K, Fukumura M (1993) A syndrome of cirrhosis, achlorhydria, small intestinal bacterial overgrowth, and fat malabsorption. Am J Gastroenterol 88(12):2084–2091

    CAS  PubMed  Google Scholar 

  125. Fouts DE, Torralba M, Nelson KE, Brenner DA, Schnabl B (2012) Bacterial translocation and changes in the intestinal microbiome in mouse models of liver disease. J Hepatol 56(6):1283–1292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Bajaj JS, Heuman DM, Hylemon PB, Sanyal AJ, White MB, Monteith P et al (2014) Altered profile of human gut microbiome is associated with cirrhosis and its complications. J Hepatol 60(5):940–947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Chen P, Schnabl B (2014) Host-microbiome interactions in alcoholic liver disease. Gut Liver 8(3):237–241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Chen P, Starkel P, Turner JR, Ho SB, Schnabl B (2015) Dysbiosis-induced intestinal inflammation activates tumor necrosis factor receptor I and mediates alcoholic liver disease in mice. Hepatology 61(3):883–894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Bajaj JS, Ridlon JM, Hylemon PB, Thacker LR, Heuman DM, Smith S et al (2012) Linkage of gut microbiome with cognition in hepatic encephalopathy. Am J Physiol Gastrointest Liver Physiol 302(1):G168–G175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Gomez-Hurtado I, Santacruz A, Peiro G, Zapater P, Gutierrez A, Perez-Mateo M et al (2011) Gut microbiota dysbiosis is associated with inflammation and bacterial translocation in mice with CCl4-induced fibrosis. PLoS One 6(7):e23037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Chen P, Torralba M, Tan J, Embree M, Zengler K, Starkel P et al (2015) Supplementation of saturated long-chain fatty acids maintains intestinal eubiosis and reduces ethanol-induced liver injury in mice. Gastroenterology 148(1):203–214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Bajaj JS, Hylemon PB, Ridlon JM, Heuman DM, Daita K, White MB et al (2012) Colonic mucosal microbiome differs from stool microbiome in cirrhosis and hepatic encephalopathy and is linked to cognition and inflammation. Am J Physiol Gastrointest Liver Physiol 303(6):G675–G685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Fava F, Danese S (2011) Intestinal microbiota in inflammatory bowel disease: friend of foe? World J Gastroenterol 17(5):557–566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Arthur JC, Perez-Chanona E, Muhlbauer M, Tomkovich S, Uronis JM, Fan TJ et al (2012) Intestinal inflammation targets cancer-inducing activity of the microbiota. Science 338(6103):120–123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Wiest R, Lawson M, Geuking M (2014) Pathological bacterial translocation in liver cirrhosis. J Hepatol 60(1):197–209

    Article  PubMed  Google Scholar 

  136. Steffen EK, Berg RD, Deitch EA (1988) Comparison of translocation rates of various indigenous bacteria from the gastrointestinal tract to the mesenteric lymph node. J Infect Dis 157(5):1032–1038

    Article  CAS  PubMed  Google Scholar 

  137. Wells CL (1996) Colonization and translocation of intestinal bacterial flora. Transplant Proc 28(5):2653–2656

    CAS  PubMed  Google Scholar 

  138. Wells CL, Maddaus MA, Reynolds CM, Jechorek RP, Simmons RL (1987) Role of anaerobic flora in the translocation of aerobic and facultatively anaerobic intestinal bacteria. Infect Immun 55:2689–2694

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Bert F, Johnson JR, Ouattara B, Leflon-Guibout V, Johnston B, Marcon E et al (2010) Genetic diversity and virulence profiles of escherichia coli isolates causing spontaneous bacterial peritonitis and bacteremia in patients with cirrhosis. J Clin Microbiol 48(8):2709–2714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Garcia-Tsao G (1991) Spontaneous bacterial peritonitis. Gastroenterol Clin North Am 21:257–275

    Google Scholar 

  141. Katouli M, Nettebladt CG, Muratov V, Ljungqvist O, Bark T, Svenberg T et al (1997) Selective translocation of coliform bacteria adhering to caecal epithelium of rats during catabolic stress. J Med Microbiol 46(7):571–578

    Article  CAS  PubMed  Google Scholar 

  142. Wells CL (1990) Relationship between intestinal microecology and the translocation of intestinal bacteria. [review] [30 refs]. Antonie Van Leeuwenhoek 58:87–93

    Article  CAS  PubMed  Google Scholar 

  143. Macutkiewicz C, Carlson G, Clark E, Dobrindt U, Roberts I, Warhurst G (2008) Characterisation of escherichia coli strains involved in transcytosis across gut epithelial cells exposed to metabolic and inflammatory stress. Microbes Infect 10(4):424–431

    Article  CAS  PubMed  Google Scholar 

  144. Ljungdahl M, Lundholm M, Katouli M, Rasmussen I, Engstrand L, Haglund U (2000) Bacterial translocation in experimental shock is dependent on the strains in the intestinal flora. Scand J Gastroenterol 35(4):389–397

    Article  CAS  PubMed  Google Scholar 

  145. Soriano G, Coll P, Guarner C, Such J, Sanchez F, Prats G et al (1995) Escherichia coli capsular polysaccharide and spontaneous bacterial peritonitis in cirrhosis. Hepatology 21(3):668–673

    Article  CAS  PubMed  Google Scholar 

  146. Bert F, Panhard X, Johnson J, Lecuyer H, Moreau R, Le GJ et al (2008) Genetic background of escherichia coli isolates from patients with spontaneous bacterial peritonitis: relationship with host factors and prognosis. Clin Microbiol Infect 14(11):1034–1040

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reiner Wiest MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Wiest, R. (2016). The Gut Microbiome and Cirrhosis: Basic Aspects. In: de Franchis, R. (eds) Portal Hypertension VI. Springer, Cham. https://doi.org/10.1007/978-3-319-23018-4_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-23018-4_18

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-23017-7

  • Online ISBN: 978-3-319-23018-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics