Skip to main content

An Efficient Algorithm to Include Sub-Voxel Data in FFT-Based Homogenization for Heat Conductivity

  • Chapter

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 105))

Abstract

The FFT-based homogenization method introduced by Moulinec–Suquet (C R Acad Sci. II, Méc Phys Chim Astron 318(11):1417–1423, 1994; Comput Methods Appl Mech Eng 157(1–2):69–94, 1998) has recently emerged as a powerful tool for numerical homogenization on regular voxel grids. Unfortunately, the treatment of voxels occupied by multiple materials is not discussed in the original method.

In this article and in the context of effective heat conductivity, we propose to furnish the interfacial voxels with appropriately chosen microstructural material estimates. These so-called composite voxels take into account volume fractions and normal data, and lead to drastic improvement of the local solution quality and the accuracy of the computed effective properties, shown by numerical experiments on a microstructure with analytical solution and a composite of industrial interest.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Acknowledgement

  1. Abaqus Unified FEA: Dassault Systèmes.http://www.3ds.com/products-services/simulia/products/abaqus/. Accessed 30 Jan 2015

  2. Eyre, D.J., Milton, G.W.: A fast numerical scheme for computing the response of composites using grid refinement. Eur. Phys. J. Appl. Phys. 6(1), 41–47 (1999)

    Article  Google Scholar 

  3. FeelMath: Fraunhofer ITWM.http://www.itwm.fraunhofer.de/feelmath. Accessed 30 Jan 2015

  4. Frigo, M., Johnson, S.G.: The design and implementation of FFTW3. Proc. IEEE 92(2), 216–231 (2005)

    Article  Google Scholar 

  5. GeoDict: Math2Market.http://www.geodict.com/. Accessed 30 Jan 2015

  6. Gholami, A., Malhotra, D., Sundar, H., Biros, G.: FFT, FMM, or MULTIGRID? A comparative study of state-of-the-art poisson solvers. arXiv preprint (2014) [arXiv:1408.6497]

    Google Scholar 

  7. Hashin, Z.: The elastic moduli of heterogeneous materials. J. Appl. Mech. 29, 143–150 (1962) doi:10.1115/1.3636446

    Article  MATH  MathSciNet  Google Scholar 

  8. Hewitt, E., Hewitt, R.E.: The Gibbs- Wilbraham phenomenon: an episode in Fourier analysis. Arch. Hist. Exact Sci. 21, 129–160 (1979). doi:10.1007/BF00330404

    Article  MATH  MathSciNet  Google Scholar 

  9. Kabel, M., Andrä, H.: Fast Numerical Computation of Precise Bounds of Effective Elastic Moduli. Fraunhofer ITWM, Kaiserslautern (2012)

    Google Scholar 

  10. Kabel, M., Merkert, D., Schneider, M.: Use of composite voxels in FFT-based homogenization. Comput. Method. Appl. M. 294, 168–188 (2015). doi:10.1016/j.cma.2015.06.003

    Article  MathSciNet  Google Scholar 

  11. Kröner, E.: Statistical Continuum Mechanics. Springer, Wien (1971)

    Book  Google Scholar 

  12. Merkert, D.: Voxel-based fast solution of the Lippmann-Schwinger equation with smooth material interfaces. Master’s thesis, University of Kaiserslautern (2013)

    Google Scholar 

  13. Michel, J.C., Moulinec, H., Suquet, P.: A computational scheme for linear and non-linear composites with arbitrary phase contrast. Int. J. Numer. Methods Eng. 52(12), 139–160 (2001). doi:10.1002/nme.275

    Article  Google Scholar 

  14. Milton, G.W.: The Theory of Composites. Cambridge University Press, Cambridge (2002)

    Book  MATH  Google Scholar 

  15. Moulinec, H., Suquet, P.: A fast numerical method for computing the linear and nonlinear mechanical properties of composites. C. R. Acad. Sci. II Méc. Phys. Chim. Astron. 318(11), 1417–1423 (1994)

    MATH  Google Scholar 

  16. Moulinec, H., Suquet, P.: A numerical method for computing the overall response of nonlinear composites with complex microstructure. Comput. Methods Appl. Mech. Eng. 157(1–2), 69–94 (1998). doi:10.1016/s0045-7825(97)00218-1

    Article  MATH  MathSciNet  Google Scholar 

  17. Reuss, A.: Berechnung der Fließgrenze von Mischkristallen auf Grund der Plastizitätsbedingung für Einkristalle. ZAMM J. Appl. Math. Mech./Zeitschrift für Angewandte Mathematik und Mechanik 9(1), 1521–4001 (1929). doi:10.1002/zamm.19290090104

    Google Scholar 

  18. Tartar, L.: An introduction to the homogenization method in optimal design. In: Optimal Shape Design. Lectures Given at the Joint CIM/CIME Summer School, Tróia, pp. 47–156, 1–6 June 1998. Springer, Berlin (2000)

    Google Scholar 

  19. Theile, T., Schneebeli, M.: Algorithm to decompose three-dimensional complex structures at the necks: tested on snow structures. IET Image Process. 5(2), 132–140 (2011). doi:10.1049/iet-ipr.2009.0410

    Article  Google Scholar 

  20. Tsekmes, I.A., Kochetov, R., Morshuis, P.H.F., Smit, J.J.: Thermal conductivity of polymeric composites: a review. In: 2013 IEEE International Conference on Solid Dielectrics (ICSD), pp. 678–681. IEEE, Bologna (2013)

    Google Scholar 

  21. Voigt, W.: Ueber die Beziehung zwischen den beiden Elasticitätsconstanten isotroper Körper. Ann. Phys. 274(12), 573–587 (1889). doi:10.1002/andp.18892741206

    Article  Google Scholar 

  22. Vondřejc, J., Zeman, J., Marek, I.: An FFT-based Galerkin method for homogenization of periodic media. Comput. Math. Appl. 68(3), 156–173 (2014). doi:10.1016/j.camwa.2014.05.014

    Article  MathSciNet  Google Scholar 

  23. Zeller, R., Dederichs, P.H.: Elastic constants of polycrystals. Phys. Status Solidi B 55(2), 831–842 (1973). doi:10.1002/pssb.2220550241

    Article  Google Scholar 

Download references

Acknowledgements

Matti Schneider gratefully acknowledges financial support by the German Research Foundation (DFG), Federal Cluster of Excellence EXC 1075 “MERGE Technologies for Multifunctional Lightweight Structures”.

The authors are deeply indebted to Inga Shklyar for help with the Abaqus computations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dennis Merkert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Merkert, D., Andrä, H., Kabel, M., Schneider, M., Simeon, B. (2015). An Efficient Algorithm to Include Sub-Voxel Data in FFT-Based Homogenization for Heat Conductivity. In: Mehl, M., Bischoff, M., Schäfer, M. (eds) Recent Trends in Computational Engineering - CE2014. Lecture Notes in Computational Science and Engineering, vol 105. Springer, Cham. https://doi.org/10.1007/978-3-319-22997-3_16

Download citation

Publish with us

Policies and ethics