Skip to main content

Extrapolation in Time in Thermal Fluid Structure Interaction

  • Chapter
Recent Trends in Computational Engineering - CE2014

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 105))

  • 919 Accesses

Abstract

We consider time dependent thermal fluid structure interaction. The respective models are the compressible Navier-Stokes equations and the nonlinear heat equation. A partitioned coupling approach via a Dirichlet-Neumann method and a fixed point iteration is employed. As a reference solver a previously developed efficient time adaptive higher order time integration scheme is used. To improve upon this, we work on reducing the number of fixed point coupling iterations. Thus, we explore the idea of extrapolation based on data given from the time integration and derive such methods for SDIRK2. This allows to reduce the number of fixed point iterations further by up to a factor of two with linear extrapolation performing better than quadratic.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arnold, M.: Stability of sequential modular time integration methods for coupled multibody system models. J. Comput. Nonlinear Dyn. 5, 1–9 (2010)

    Article  Google Scholar 

  2. Banka, A.L.: Practical applications of CFD in heat processing. Heat Treating Progress, 44–49 (August 2005)

    Google Scholar 

  3. Birken, P.: Termination criteria for inexact fixed point schemes. Numer. Linear Algebra Appl. 22(4), 702–716 (2015)

    Article  MathSciNet  Google Scholar 

  4. Birken, P.: Numerical methods for the unsteady compressible Navier-Stokes equations. Habilitation Thesis, University of Kassel (2012)

    Google Scholar 

  5. Birken, P., Quint, K.J., Hartmann, S., Meister, A.: Chosing norms in adaptive FSI calculations. Proc. Appl. Math. Mech. 10, 555–556 (2010)

    Article  Google Scholar 

  6. Birken, P., Quint, K.J., Hartmann, S., Meister, A.: A time-adaptive fluid-structure interaction method for thermal coupling. Comput. Vis. Sci. 13, 331–340 (2011)

    Article  MathSciNet  Google Scholar 

  7. Buchlin, J.M.: Convective heat transfer and infrared thermography. J. Appl. Fluid Mech. 3, 55–62 (2010)

    Google Scholar 

  8. Erbts, P., Düster, A.: Accelerated staggered coupling schemes for problems of thermoelasticity at finite strains. Comput. Math. Appl. 64, 2408–2430 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  9. Farhat, C.: CFD-based nonlinear computational aeroelasticity, chap. 13. In: Stein, E., de Borst, R., Hughes, T.J.R. (eds.) Encyclopedia of Computational Mechanics, vol. 3: Fluids, pp. 459–480. Wiley, Chichester (2004)

    Google Scholar 

  10. Gerhold, T., Friedrich, O., Evans, J., Galle, M.: Calculation of complex three-dimensional configurations employing the DLR-TAU-Code. AIAA Paper, 97-0167 (1997)

    Google Scholar 

  11. Giles, M.B.: Stability analysis of numerical interface conditions in fluid-structure thermal analysis. Int. J. Numer. Methods Fluids 25, 421–436 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  12. Heck, U., Fritsching, U., Bauckhage, K.: Fluid flow and heat transfer in gas jet quenching of a cylinder. Int. J. Numer. Methods Heat Fluid Flow 11, 36–49 (2001)

    Article  MATH  Google Scholar 

  13. Hinderks, M., Radespiel, R.: Investigation of hypersonic gap flow of a reentry nosecap with consideration of fluid structure interaction. AIAA Paper, 06-1111 (2006)

    Google Scholar 

  14. Küttler, U., Wall, W.A.: Fixed-point fluid-structure interaction solvers with dynamic relaxation. Comput. Mech. 43, 61–72 (2008)

    Article  MATH  Google Scholar 

  15. Le Tallec, P., Mouro, J.: Fluid structure interaction with large structural displacements. Comput. Methods Appl. Mech. Eng. 190, 3039–3067 (2001)

    Article  MATH  Google Scholar 

  16. Lior, N.: The cooling process in gas quenching. J. Mater. Process. Technol. 155–156, 1881–1888 (2004)

    Article  Google Scholar 

  17. Mehta, R.C.: Numerical computation of heat transfer on reentry capsules at Mach 5. AIAA-Paper 2005-178, (2005)

    Google Scholar 

  18. Michler, C., van Brummelen, E.H., de Borst, R.: Error-amplification analysis of subiteration-preconditioned GMRES for fluid-structure interaction. Comput. Methods Appl. Mech. Eng. 195, 2124–2148 (2006)

    Article  MATH  Google Scholar 

  19. Olsson, H., Söderlind, G.: Stage value predictors and efficient Newton iterations in implicit Runge-Kutta methods. SIAM J. Sci. Comput. 20, 185–202 (1998)

    Article  MathSciNet  Google Scholar 

  20. Quint, K.J., Hartmann, S., Rothe, S., Saba, N., Steinhoff, K.: Experimental validation of high-order time integration for non-linear heat transfer problems. Comput. Mech. 48, 81–96 (2011)

    Article  MATH  Google Scholar 

  21. Spalart, P.R., Allmaras, S.R.: A one-equation turbulence model for aerodynamic flows. AIAA 30th Aerospace Science Meeting, 92–0439 (1992)

    Google Scholar 

  22. Stratton, P., Shedletsky, I., Lee, M.: Gas quenching with helium. Solid State Phenom. 118, 221–226 (2006)

    Article  Google Scholar 

  23. Vierendeels, J., Lanoye, L., Degroote, J., Verdonck, P.: Implicit coupling of partitioned fluid-structure interaction problems with reduced order models. Comput. Struct. 85, 970–976 (2007)

    Article  Google Scholar 

  24. Weidig, U., Saba, N., Steinhoff, K.: Massivumformprodukte mit funktional gradierten Eigenschaften durch eine differenzielle thermo-mechanische Prozessführung. WT-Online, pp. 745–752 (2007)

    Google Scholar 

  25. Zienkiewicz, O., Taylor, R.: The Finite Element Method. Butterworth Heinemann (2000)

    Google Scholar 

  26. van Zuijlen, S., Bosscher, A.H., Bijl, H.: Two level algorithms for partitioned fluid-structure interaction computations. Comput. Methods Appl. Mech. Eng. 196, 1458–1470 (2007)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philipp Birken .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Birken, P., Gleim, T., Kuhl, D., Meister, A. (2015). Extrapolation in Time in Thermal Fluid Structure Interaction. In: Mehl, M., Bischoff, M., Schäfer, M. (eds) Recent Trends in Computational Engineering - CE2014. Lecture Notes in Computational Science and Engineering, vol 105. Springer, Cham. https://doi.org/10.1007/978-3-319-22997-3_13

Download citation

Publish with us

Policies and ethics