Skip to main content

Integration of Biological Neural Models for the Control of Eye Movements in a Robotic Head

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9222))

Abstract

We developed a biologically plausible control algorithm to move the eyes of a six degrees of freedom robotic head in a human-like manner. Our neurocontroller, written with the neural simulator Nengo, integrates different biological neural models of eye movements, such as microsaccades, saccades, vestibular-ocular reflex, smooth pursuit and vergence. The coordination of the movements depends on the stream of sensory information acquired by two silicon retinas used as eyes and by an inertial measurement unit, which serves as a vestibular system. The eye movements generated by our neurocontroller resemble those of humans when exposed to the same visual input. This robotic platform can be used to investigate the most efficient exploration strategies used to extract salient features from either a static or dynamic visual scene. Future research should focus on technical enhancements and model refinements of the system.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Rothkopf, C.A., Ballard, D.H., Hayhoe, M.M.: Task and context determine where you look. J Vis. Dec. 19 7(14), 16.1–20 (2007). doi:10.1167/7.14.16

    Google Scholar 

  2. Asuni, G., Teti, G., Laschi, C., Guglielmelli, E., Dario, P.: A robotic head neuro-controller based on biologically-inspired neural models. In: Proceedings of the 2005 IEEE International Conference on Robotics and Automation, ICRA 2005, pp. 2362–2367, 18–22 (2005)

    Google Scholar 

  3. He, H., Ge, S.S., Zhang, Z.: A saliency-driven robotic head with bio-inspired saccadic behaviors for social robotics. Autonomous Robots 36(3), 225–240 (2013). doi:10.1007/s10514-013-9346-z

    Article  Google Scholar 

  4. Shibata T.: An overview of human interactive robots for psychological enrichment. In: Proceedings of the IEEE, vol. 91, no. 11 (2004)

    Google Scholar 

  5. Berthouze, L., Kuniyoshi, Y.: Emergence and Categorization of Coordinated Visual Behavior Through Embodied Interaction. Machine Learning 31, 187–200 (1998)

    Article  Google Scholar 

  6. Kuniyoshi, Y., Kita, N., Sugimoto, K., Nakamura, S., Suehiro, T.: A foveated wide angle lens for active vision. In: Proceedings 1995 IEEE International Conference on Robotics and Automation, vol. 3, pp. 2982–2988, 21–27 (1995)

    Google Scholar 

  7. Kohonen, T.: Self-Organized Formation of Topologically Correct Feature Maps. Biological Cybernetics 49(1), 59–69 (1982)

    Article  MathSciNet  Google Scholar 

  8. Bjorkman, M., Kragic, D.: Combination of foveal and peripheral vision for object recognition and pose estimation. In: Proceedings 2004 IEEE International Conference on Robotics and Automation, ICRA 2004, vol. 5, pp. 5135–5140 (2004)

    Google Scholar 

  9. Eliasmith, C., Stewart, T.C., Choo, X., Bekolay, T., DeWolf, T., Tang, Y., Rasmussen, D.: A Large-Scale Model of the Functioning Brain. Science 338(6111), 1202–1205 (2012)

    Article  Google Scholar 

  10. Dodgson N.A.: Variation and extrema of human interpupillary distance. Electronic Imaging 36–46 (2004)

    Google Scholar 

  11. Robotis Inc.: http://www.robotis.com

  12. Lichtsteiner, P., Posch, C., Delbruck, T.: A 128\(\times \)128 120 dB 15 \(\mu \)s Latency Asynchronous Temporal Contrast Vision Sensor. IEEE Journal of Solid-State Circuits 43(2), 566–576 (2008)

    Article  Google Scholar 

  13. Riggs, L.A., Ratliff, F.: The effects of counteracting the normal movements of the eye. Journal of the Optical Society of America 42, 872–873 (1952)

    Google Scholar 

  14. Martinez-Conde, S., Macknik, S.L., Troncoso, X.G., Dyar, T.A.: Microsaccades counteract visual fading during fixation. Neuron. 49(2), 297–305 (2006)

    Article  Google Scholar 

  15. OptiTrak Tracking System: https://www.optitrack.com

  16. Martinez-Conde, S., Otero-Millan, J., Macknik, S.L.: The impact of microsaccades on vision: towards a unified theory of saccadic function. Nature Reviews Neuroscience 14, 83–96 (2013)

    Article  Google Scholar 

  17. Mink, J.: The basal ganglia: focused selection and inhibition of competing motor programs. Progress in Neurobiology 50(4), 381–425 (1996)

    Article  Google Scholar 

  18. Redgrave, P., Prescott, T., Gurney, K.N.: The basal ganglia: A vertebrate solution to the selection problem? Neuroscience 89, 1009–1023 (1999)

    Article  Google Scholar 

  19. Gurney, K., Prescott, T.J., Redgrave, P.: A computational model of action selection in the basal ganglia. II. Analysis and simulation of behaviour. Biological Cybernetics 84(6), 411–423 (2001)

    Article  Google Scholar 

  20. Itti, L., Koch, C.: Computational modelling of visual attention. Nature Reviews Neuroscience 2, 194–203 (2001). doi:10.1038/35058500

    Article  Google Scholar 

  21. Hubel D.H., Wiesel T.N.: Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. J. Physiol. (1962)

    Google Scholar 

  22. Li, Z.: A saliency map in primary visual cortex. Trends in cognitive sciences 6(1), 9–16 (2002)

    Article  Google Scholar 

  23. Van Santen, J.P.H., Sperling, G.: Elaborated Reichardt detectors. JOSA A 2(2), 300 (1985)

    Article  Google Scholar 

  24. Conradt, J., Simon, P., Pescatore, M., Verschure, P.F.M.J.: Saliency maps operating on stereo images detect landmarks and their distance. In: Dorronsoro, J.R. (ed.) ICANN 2002. LNCS, vol. 2415, pp. 795–800. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  25. Franz A., Triesch J.: Emergence of disparity tuning during the development of vergence eye movements. In: IEEE 6th International Conference on Development and Learning, pp. 31–36, pp. 11–13 (2007) doi:10.1109/DEVLRN.2007.4354029

  26. Patel, S.S., Ogmen, H., White, J.M., Jiang, B.C.: Neural network model of short-term horizontal disparity vergence dynamics. Vision Research 37(10), 1383–1399 (1997)

    Article  Google Scholar 

  27. Pritchard, R.M.: Stabilized images on the retina. Sci. Am. 204, 72–78 (1961)

    Article  Google Scholar 

  28. Rolfs, M., Kliegl, R., Engbert, R.: Toward a model of microsaccade generation: the case of microsaccadic inhibition. J. Vis. 8(11), 5.1–23 (2008)

    Article  Google Scholar 

  29. Krekelberg, B.: Microsaccades. Current Biology 21(11), 416 (2011)

    Article  Google Scholar 

  30. Mital, P.K., Smith, T.J., Hill, R., Henderson, J.M.: Clustering of Gaze during Dynamic Scene Viewing is Predicted by Motion. Cognitive Computation 3(1), 5–24 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Marcello Mulas or Jörg Conradt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Mulas, M., Zhan, M., Conradt, J. (2015). Integration of Biological Neural Models for the Control of Eye Movements in a Robotic Head. In: Wilson, S., Verschure, P., Mura, A., Prescott, T. (eds) Biomimetic and Biohybrid Systems. Living Machines 2015. Lecture Notes in Computer Science(), vol 9222. Springer, Cham. https://doi.org/10.1007/978-3-319-22979-9_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-22979-9_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-22978-2

  • Online ISBN: 978-3-319-22979-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics