Skip to main content

From Orbital Models to Accurate Predictions

  • Chapter
  • First Online:
Magnetic Interactions in Molecules and Solids

Part of the book series: Theoretical Chemistry and Computational Modelling ((TCCM))

  • 70k Accesses

Abstract

Basic understanding and qualitative prediction of the isotropic magnetic coupling between two magnetic centers can be obtained with two well-established valence-only models. This chapter discusses the Kahn–Briat and Hay–Thibeault–Hoffmann models, which have been (and still are) of fundamental importance for understanding the basics of magnetism in polynuclear transition metal complexes. After shortly presenting the basic model for magnetism in organic radicals, we review the most evident magnetostructural relations and then move to the accurate prediction of the magnetic coupling. An overview of the most widely used quantum chemical methods is given, including wave function based methods and approaches within the spin-unrestricted setting such as density functional theory. The last part of the chapter is dedicated to the calculation of the interactions beyond the isotropic magnetic coupling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Gerade and ungerade (odd and even in German) make reference to the effect of the sign of the orbital under the action of the inversion operator. The gerade orbital does not change sign, while the ungerade orbital is converted to its opposite.

  2. 2.

    This is of course an approximation. There is no obvious reason to exclude the intermediate spin states from the linear combination.

  3. 3.

    In the case of magnetic interactions, the multideterminantal character of the N-electron states with \(S<S_{max}\).

References

  1. O. Kahn, B. Briat, J. Chem. Soc., Faraday Trans. 2(72), 268 (1976)

    Article  Google Scholar 

  2. P.J. Hay, J.C. Thibeault, R.J. Hoffmann, J. Am. Chem. Soc. 97, 4884 (1975)

    Article  CAS  Google Scholar 

  3. H.M. McConnell, J. Chem. Phys. 39, 1910 (1963)

    Article  CAS  Google Scholar 

  4. M. Deumal, J.J. Novoa, M.J. Bearpark, P. Celani, M. Olivucci, M.A. Robb, J. Phys. Chem. A 102, 8404 (1998)

    Article  CAS  Google Scholar 

  5. J.J. Novoa, M. Deumal, Struct. Bond. 100, 33 (2001)

    Article  CAS  Google Scholar 

  6. E. Ruiz, P. Alemany, S. Alvarez, J. Cano, J. Am. Chem. Soc. 119, 1297 (1997)

    Article  CAS  Google Scholar 

  7. O. Kahn, Molecular Magnetism (VCH Publishers, New York, 1993)

    Google Scholar 

  8. J.P. Launay, M. Verdaguer, Electrons in Molecules: From Basic Principles to Molecular Electronics (Oxford University Press, Oxford, 2014)

    Google Scholar 

  9. O. Kahn, J. Galy, Y. Journaux, J. Jaud, I. Morgenstern-Badarau, J. Am. Chem. Soc. 104, 2165 (1982)

    Article  CAS  Google Scholar 

  10. R. Costa, A. Garcia, J. Ribas, T. Mallah, Y. Journaux, J. Sletten, X. Solans, V. Rodríguez, Inorg. Chem. 32, 3733 (1993)

    Article  CAS  Google Scholar 

  11. T. Helgaker, P. Jørgensen, J. Olsen, Molecular Electronic-structure Theory (Wiley, Chichester, 2000)

    Book  Google Scholar 

  12. J. Miralles, O. Castell, R. Caballol, J.P. Malrieu, Chem. Phys. 172, 33 (1993)

    Article  CAS  Google Scholar 

  13. K. Andersson, P.Å. Malmqvist, B.O. Roos, J. Chem. Phys. 96, 1218 (1992)

    Article  CAS  Google Scholar 

  14. C. Angeli, R. Cimiraglia, S. Evangelisti, T. Leininger, J.P. Malrieu, J. Chem. Phys. 114, 10252 (2001)

    Article  CAS  Google Scholar 

  15. C. Angeli, R. Cimiraglia, J.P. Malrieu, J. Chem. Phys. 117(20), 9138 (2002)

    Article  CAS  Google Scholar 

  16. K.G. Dyall, J. Chem. Phys. 102, 4909 (1995)

    Article  CAS  Google Scholar 

  17. J.P. Malrieu, R. Caballol, C.J. Calzado, C. de Graaf, N. Guihéry, Chem. Rev. 114, 429 (2014)

    Article  CAS  Google Scholar 

  18. R. Caballol, O. Castell, F. Illas, I. de P.R. Moreira, J.P. Malrieu, J. Phys. Chem. A 101(42), 7860 (1997)

    Google Scholar 

  19. E. Ruiz, J. Cano, S. Alvarez, P. Alemany, J. Comput. Chem. 20(13), 1391 (1999)

    Article  CAS  Google Scholar 

  20. K. Yamaguchi, H. Fukui, T. Fueno, Chem. Lett. 15, 625 (1986)

    Article  Google Scholar 

  21. L. Noodleman, J. Chem. Phys. 74, 5737 (1981)

    Article  CAS  Google Scholar 

  22. J.P. Perdew, A. Savin, K. Burke, Phys. Rev. A 51(6), 4531 (1995)

    Article  CAS  Google Scholar 

  23. M. Filatov, S. Shaik, Chem. Phys. Lett. 288, 689 (1998)

    Article  CAS  Google Scholar 

  24. M. Filatov, S. Shaik, Chem. Phys. Lett. 304, 429 (1999)

    Article  CAS  Google Scholar 

  25. A.I. Krylov, Chem. Phys. Lett. 350, 522 (2001)

    Article  CAS  Google Scholar 

  26. Y.A. Bernard, Y. Shao, A.I. Krylov, J. Chem. Phys. 136, 204103 (2012)

    Article  Google Scholar 

  27. B. Kaduk, T. Kowalczyk, T. Van Voorhis, Chem. Rev. 112, 321 (2012)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Coen de Graaf .

Problems

Problems

4.1

A master student wants to study the energy splitting \(E_S-E_T\) in a planar [Cu\(_2\)F\(_6\)]\(^{2-}\) model system, since experimental studies of similar di Cl-bridged Cu\(^{\mathrm {II}}\) dimers suggested that \(E_S-E_T\) depends strongly on the Cu–Cl–Cu angle \(\theta \). She performs RHF calculations on the triplet state in order to predict \(E_S-E_T\) with the HTH model. She produces a Table of results, where the gerade and ungerade open shell orbitals are denoted 1 and 2, respectively.

 

\(\theta \)

\(\frac{J_{11}+J_{22}}{2}-J_{12}\) [K]

\(K_{12}\) [\(\mathrm {E_h}\)]

\(\varepsilon _1 - \varepsilon _2\) [\(\mathrm {E_h}\)]

85\(^{\circ }\)

24

0.4324

\(-\)0.0078

90\(^{\circ }\)

20

0.4376

\(-\)0.0025

95\(^{\circ }\)

22

0.4419

0.0034

100\(^{\circ }\)

26

0.4456

0.0094

105\(^{\circ }\)

32

0.4483

0.0150

 

Compute J (in K) for \(\theta = 85^{\circ }\ldots 105^{\circ }\) using the HTH model. Do you observe a strong dependence of the coupling on the angle? Can the same conclusions be drawn when only considering the orbital energies?

4.2

Quantifying the counter-complementarity effect. Standard optimization of the molecular orbitals of a magnetic complex with two magnetic centers bridged by two different ligands normally leads to magnetic orbitals with contributions on both ligands (as \(\varphi _5\) and \(\varphi _6\) in Fig. 4.9). This makes it very hard to quantify the counter-complementary effect of the two ligands. Design a computational strategy to determine quantitatively the reduction of the magnetic coupling through ligand 1 by the counter-complementary effect of ligand 2. Hint: Many quantum chemical programs can divide the whole system into fragments.

4.3

Broken symmetry approach. The magnetic coupling of three binuclear TM complexes has been studied with DFT. The following results were obtained for the HS and BS determinants. (a) Calculate the magnetic coupling parameter J with the Yamaguchi equation (Eq. 4.85) and compare the outcomes to the alternative relations of Noodleman (Eq. 4.86) and Ruiz (Eq. 4.87).

 

TM

Energy [\(\mathrm {E_h}\)]

\(\langle {{\hat{S}}^2}\rangle \)

 

\(\varPhi _{HS}\)

\(\varPhi _{BS}\)

\(\varPhi _{HS}\)

\(\varPhi _{BS}\)

Cu\(^{\mathrm {2+}}\)

\(-\)4061.7435920

\(-\)4061.7442381

2.0035

0.9957

Ni\(^{\mathrm {2+}}\)

\(-\)3797.4742498

\(-\)3797.4767694

6.0083

1.9931

Mn\(^{\mathrm {2+}}\)

\(-\)3082.7586297

\(-\)3082.7630415

30.0086

4.9936

 

(b) Calculate J in the Cu complex combining Eqs. 4.67 and 4.78 using \(\rho ^{\alpha -\beta }\) is 0.6864 and 0.6757 for HS and BS, respectively.

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

de Graaf, C., Broer, R. (2016). From Orbital Models to Accurate Predictions. In: Magnetic Interactions in Molecules and Solids. Theoretical Chemistry and Computational Modelling. Springer, Cham. https://doi.org/10.1007/978-3-319-22951-5_4

Download citation

Publish with us

Policies and ethics