Skip to main content

Remote Control: Parasite Induced Phenotypic Changes in Fish

  • Chapter

Part of the book series: Parasitology Research Monographs ((Parasitology Res. Monogr.,volume 7))

Abstract

Among the strategies that parasites have evolved to increase the probability of a successful transmission, the (targeted) alteration of the host’s phenotype is certainly the most impressive and spectacular way. A large number of publications exist that have compiled and categorised correlations of parasitic infections and the occurrence of changes of phenotypic traits (e.g. behaviour, morphology, physiology) of their hosts. In this context, studies on fish parasites have documented an impact on almost every aspect of fish behaviour alongside changes in host morphology and/or physiology. This short review provides a quick and basic overview over the forms and diversity of parasite induced phenotypic changes in marine and freshwater fish species. Most frequently reported parasites and their correlated alterations were compiled from 57 publications and presented in a table. Behavioural changes were found among seven different parasite groups: Protozoa, Myxozoa, Digenea, Monogenea, Cestoda, Nematoda and Crustacea. Changes were categorized into five major categories: foraging, habitat selection, motility, predator avoidance and reproduction, whereas the most common behavioural change was involving motility with 34 cases, followed by predator avoidance (10), reproduction (8), foraging (5), and habitat selection (3). Most species involved in behavioural changes were found among the group of Digenea, with 13 different parasite species, followed by Cestoda with 6 different species. All other groups were more or less equally represented. Parasite specific forms of host manipulation are exemplified and discussed in the text.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adlard R, Lester R (1995) The life-cycle and biology of Anilocra pomacentri (Isopoda, Cymothoidae), an ectoparasitic isopod of the coral-reef fish, Chromis nitida (Perciformes, Pomacentridae). Aust J Zool 43:271–281

    Google Scholar 

  • Anderson RC (2000) Nematode parasites of vertebrates: their development and transmission. CABI Publishing, Wallingford, 676 pp

    Google Scholar 

  • Andersson M (1994) Sexual selection. Princeton University Press, Princeton, 624 pp

    Google Scholar 

  • Arme C, Owen RW (1967) Infections of the three-spined stickleback, Gasterosteus aculeatus L., with the plerocercoid larvae of Schistocephalus solidus (Muller, 1776), special reference to pathological effects. Parasitology 57:301–314

    CAS  PubMed  Google Scholar 

  • Arme C, Owen RW (1968) Occurrence and pathology of Ligula intestinalis infections in British fishes. J Parasitol 54:272–280

    CAS  PubMed  Google Scholar 

  • Arnott SA, Barber I, Huntingford FA (2000) Parasite–associated growth enhancement in a fish–cestode system. Proc R Soc Lond B Biol Sci 267:657–663

    CAS  Google Scholar 

  • Bakker TCM, Mazzi D, Zala S (1997) Parasite-induced changes in behavior and color make Gammarus pulex more prone to fish predation. Ecology 78:1098

    Google Scholar 

  • Barber I (2007) Parasites, behaviour and welfare in fish. Appl Anim Behav Sci 104:251–264

    Google Scholar 

  • Barber I, Huntingford FA (1995) The effect of Schistocephalus solidus (Cestoda: Pseudophyllidea) on the foraging and shoaling behaviour of three-spined sticklebacks, Gasterosteus aculeatus. Behaviour 132:1223–1240

    Google Scholar 

  • Barber I, Wright HA (2005) Effects of parasites on fish behaviour: interactions with host physiology. In: Wilson RW, Balshine S, Sloman KA (eds) Fish physiology: behaviour and physiology of fish. Elsevier Academic Press, Amsterdam/London, pp 109–149

    Google Scholar 

  • Barber I, Hoare D, Krause J (2000) Effects of parasites on fish behaviour: a review and evolutionary perspective. Rev Fish Biol Fish 10:131–165

    Google Scholar 

  • Baudoin M (1975) Host castration as a parasitic strategy. Evolution 29:335–352

    Google Scholar 

  • Beaver PC (1939) The morphology and life history of Psilostomum ondatrae Price, 1931 (Trematoda: Psilostomidae). J Parasitol 25:383–393

    Google Scholar 

  • Bernier NJ (2006) The corticotropin-releasing factor system as a mediator of the appetite-suppressing effects of stress in fish. Gen Comp Endocrinol 146:45–55

    CAS  PubMed  Google Scholar 

  • Bernier NJ (2010) Food intake regulation and disorders. In: Leatherland JF, Woo PTK (eds) Fish diseases and disorders, vol 2, Non-infectious disorders. CAB International, Wallingford/Cambridge, pp 238–266

    Google Scholar 

  • Binning SA, Barnes JI, Davies JN, Backwell PRY, Keogh JS, Roche DG (2014) Ectoparasites modify escape behaviour, but not performance, in a coral reef fish. Anim Behav 93:1–7

    Google Scholar 

  • Boon JH, Cannaerts VMH, Augustijn H, Machiels MAM, De Charleroy D, Ollevier F (1990) The effect of different infection levels with infective larvae of Anguillicola crassus on haematological parameters of European eel (Anguilla anguilla). Aquaculture 87:243–253

    Google Scholar 

  • Boxshall GA (2005a) Copepoda (copepods). In: Rohde K (ed) Marine parasitology. CABI Publishing, Wallingford, pp 123–138

    Google Scholar 

  • Boxshall GA (2005b) Branchiura (branchurians). In: Rohde K (ed) Marine parasitology. CABI Publishing, Wallingford, pp 145–147

    Google Scholar 

  • Boyce NP (1979) Effects of Eubothrium salvelini (Cestoda: Pseudophyllidea) on the growth and vitality of sockeye salmon, Oncorhynchus nerka. Can J Zool 57:597–602

    Google Scholar 

  • Brassard P, Curtis MA, Rau ME (1982) Seasonality of Diplostomum spathaceum (Trematoda: Strigeidae) transmission to brook trout (Salvelinus fontinalis) in northern Quebec, Canada. Can J Zool 60:2258–2263

    Google Scholar 

  • Bunkley-Williams L, Williams JEH (1998) Isopoda associated with fishes: a synopsis and corrections. J Parasitol 84:893–896

    CAS  PubMed  Google Scholar 

  • Busch MW, Kuhn T, Münster J, Klimpel S (2012) Marine crustaceans as potential hosts and vectors for metazoan parasites. In: Mehlhorn H (ed) Arthropods as vectors of emerging diseases. Springer, Berlin Heidelberg, pp 329–360

    Google Scholar 

  • Butler JA, Millemann RE (1971) Effect of the “salmon poisoning” trematode, Nanophyetus salmincola, on the swimming ability of juvenile salmonid fishes. J Parasitol 57:860–865

    Google Scholar 

  • Caira JN, Reyda FB (2005) Eucestoda (true tapeworms). In: Rohde K (ed) Marine parasitology. CABI Publishing, Wallingford, pp 92–104

    Google Scholar 

  • Cézilly F, Thomas F, Médoc V, Perrot-Minnot M-J (2010) Host-manipulation by parasites with complex life cycles: adaptive or not? Trends Parasitol 26:311–317

    PubMed  Google Scholar 

  • Chin A, Guo FC, Bernier NJ, Woo PT (2004) Effect of Cryptobia salmositica-induced anorexia on feeding behavior and immune response in juvenile rainbow trout Oncorhynchus mykiss. Dis Aquat Organ 58:17–26

    PubMed  Google Scholar 

  • Coleman FC (1993) Morphological and physiological consequences of parasites encysted in the bulbus arteriosus of an estuarine fish, the sheepshead minnow, Cyprinodon variegatus. J Parasitol 79:247

    CAS  PubMed  Google Scholar 

  • Combes C (1991) Ethological aspects of parasite transmission. Am Nat 138:866–880

    Google Scholar 

  • Consuegra S, Garcia de Leaniz C (2008) MHC-mediated mate choice increases parasite resistance in salmon. Proc R Soc B Biol Sci 275:1397–1403

    Google Scholar 

  • Cribb TH (2005) Digenea (endoparasitic flukes). In: Rohde K (ed) Marine parasitology. CABI Publishing, Wallingford, pp 76–87

    Google Scholar 

  • Crowden AE, Broom DM (1980) Effects of the eyefluke, Diplostomum spathaceum, on the behaviour of dace (Leuciscus leuciscus). Anim Behav 28:287–294

    Google Scholar 

  • Dence WA (1958) Studies on Ligula-infected common shiners (Notropis cornutus frontalis Agassiz) in the Adirondacks. J Parasitol 44:334–338

    Google Scholar 

  • de Souza Azevedo J, da Silva LG, Bizerri CRSF, Dansa-Petretski MA, Lima NRW (2006) Infestation pattern and parasitic castration of the crustacean Riggia paranensis (Crustacea: Cymothoidea) on the fresh water fish Cyphocharax gilbert (Teleostei: Curimatidae). Neotropical Ichthyol 4:363–369

    Google Scholar 

  • Dobson AP (1988) The population biology of parasite-induced changes in host behavior. Q Rev Biol 63:139–165

    CAS  PubMed  Google Scholar 

  • Eizaguirre C, Lenz TL, Kalbe M, Milinski M (2012) Rapid and adaptive evolution of MHC genes under parasite selection in experimental vertebrate populations. Nat Commun 3:621

    PubMed Central  PubMed  Google Scholar 

  • El-Matbouli M, Hoffmann RW (1998) Light and electron microscopic studies on the chronological development of Myxobolus cerebralis to the actinosporean stage in Tubifex tubifex. Int J Parasitol 28:195–217

    CAS  PubMed  Google Scholar 

  • El-Matbouli M, Hoffmann RW, Schoel H et al (1999) Whirling disease: host specificity and interaction between the actinosporean stage of Myxobolus cerebralis and rainbow trout Oncorhynchus mykiss. Dis Aquat Org 35:1–12

    Google Scholar 

  • Ferguson MS, Hayford RA (1941) The life history and control of an eye fluke: an account of a serious hatchery disease caused by a parasitic worm. Progress Fish-Cult 8:1–13

    Google Scholar 

  • Fogelman RM, Grutter AS (2008) Mancae of the parasitic cymothoid isopod, Anilocra apogonae: early life history, host-specificity, and effect on growth and survival of preferred young cardinal fishes. Coral Reefs 27:685–693

    Google Scholar 

  • Fogelman RM, Kuris AM, Grutter AS (2009) Parasitic castration of a vertebrate: effect of the cymothoid isopod, Anilocra apogonae, on the five-lined cardinalfish, Cheilodipterus quinquelineatus. Int J Parasitol 39:577–583

    PubMed  Google Scholar 

  • Garnick E, Margolis L (1990) Influence of four species of helminth parasites on orientation of seaward migrating sockeye salmon (Oncorhynchus nerka) smolts. Can J Fish Aquat Sci 47:2380–2389

    Google Scholar 

  • Gilbert MA, Granath WO (2001) Persistent infection of Myxobolus cerebralis, the causative agent of salmonid whirling disease, in Tubifex tubifex. J Parasitol 87:101–107

    CAS  PubMed  Google Scholar 

  • Gilbert MA, Granath WO (2003) Whirling disease of salmonid fish: life cycle, biology, and disease. J Parasitol 89:658–667

    Google Scholar 

  • Giles N (1983) Behavioural effects of the parasite Schistocephalus solidus (Cestoda) on an intermediate host, the three-spined stickleback, Gasterosteus aculeatus L. Anim Behav 31:1192–1194

    Google Scholar 

  • Godin J-GJ, Sproul CD (1988) Risk taking in parasitized sticklebacks under threat of predation: effects of energetic need and food availability. Can J Zool 66:2360–2367

    Google Scholar 

  • Guthrie JF, Kroger RL (1974) Schooling habits of injured and parasitized menhaden. Ecology 55:208–210

    Google Scholar 

  • Hall SR, Becker C, Caceres CE (2007) Parasitic castration: a perspective from a model of dynamic energy budgets. Integr Comp Biol 47:295–309

    PubMed  Google Scholar 

  • Hamilton WD, Zuk M (1982) Heritable true fitness and bright birds: a role for parasites? Science 218:384–387

    CAS  PubMed  Google Scholar 

  • Hayward C (2005) Monogenea Polyopisthocotylea (ectoparasitic flukes). In: Rohde K (ed) Marine parasitology. CABI Publishing, Wallingford, pp 55–63

    Google Scholar 

  • Hedrick RP, Adkison MA, El-Matbouli M, MacConnell E (1998) Whirling disease: re-emergence among wild trout. Immunol Rev 166:365–376

    CAS  PubMed  Google Scholar 

  • Heins DC, Baker JA, Toups MA, Birden EL (2010) Evolutionary significance of fecundity reduction in threespine stickleback infected by the diphyllobothriidean cestode Schistocephalus solidus. Biol J Linn Soc 100:835–846

    Google Scholar 

  • Herting GE, Witt A (1967) The role of physical fitness of forage fishes in relation to their vulnerability to predation by Bowfin (Amia calva). T Am Fish Soc 96:427–430

    Google Scholar 

  • Houde AE, Torio AJ (1992) Effect of parasitic infection on male color pattern and female choice in guppies. Behav Ecol 3:346–351

    Google Scholar 

  • Hurd H (1990) Physiological and behavioural interactions between parasites and invertebrate hosts. Adv Parasitol 29:271–318

    CAS  PubMed  Google Scholar 

  • Hurd H (2001) Host fecundity reduction: a strategy for damage limitation? Trends Parasitol 17:363–368

    CAS  PubMed  Google Scholar 

  • Jones SRM, Woo PTK, Stevenson RMW (1986) Immunosuppression in rainbow trout, Salmo gairdneri Richardson, caused by the haemoflagellate Cryptobia salmositica Katz, 1951. J Fish Dis 9:431–438

    Google Scholar 

  • Kabata Z (1970) Diseases of fishes: Crustacea as enemies of fishes. T.F.H. Publishers, Jersey City, 171 pp

    Google Scholar 

  • Karl H, Baumann F, Ostermeyer U, Kuhn T, Klimpel S (2011) Anisakis simplex (ss) larvae in wild Alaska salmon: no indication of post-mortem migration from viscera into flesh. Dis Aquat Org 94:201

    PubMed  Google Scholar 

  • Kent ML, Andree KB, Bartholomew JL, El-Matbouli M, Desser SS, Devlin RH, Feist SW, Hedrick RP, Hoffmann RW, Khattra J, Hallett SL, Lester RJG, Longshaw M, Palenzeula O, Siddall ME, Xiao C (2001) Recent advances in our knowledge of the Myxozoa. J Eukaryot Microbiol 48:395–413

    CAS  PubMed  Google Scholar 

  • Khan RA (1988) Experimental transmission, development, and effects of a parasitic copepod, Lernaeocera branchialis, on Atlantic cod, Gadus morhua. J Parasitol 74:586

    CAS  PubMed  Google Scholar 

  • Klapper R, Kuhn T, Münster J, Levsen A, Karl H, Klimpel S (2015) Anisakid nematodes in beaked redfish (Sebastes mentella) from three fishing grounds in the North Atlantic, with special notes on distribution in the fish musculature. Vet Parasitol 207:72–80

    PubMed  Google Scholar 

  • Klimpel S, Busch MW, Kellermanns E, Kleinertz S, Palm HW (2009) Metazoan deep-sea fish parasites. Natur u Wissenschaft, Solingen, 384 pp

    Google Scholar 

  • Krause J (1994) The influence of food competition and predation risk on size-assortative shoaling in juvenile chub (Leuciscus cephalus). Ethology 96:105–116

    Google Scholar 

  • Krause J, Godin J-GJ (1994a) Shoal choice in the banded killifish (Fundulus diaphanus, Teleostei, Cyprinodontidae): effects of predation risk, fish size, species composition and size of shoals. Ethology 98:128–136

    Google Scholar 

  • Krause J, Godin J-GJ (1994b) Influence of parasitism on the shoaling behaviour of banded killifish, Fundulus diaphanus. Can J Zool 72:1775–1779

    Google Scholar 

  • Krause J, Godin J-GJ (1996) Influence of parasitism on shoal choice in the banded killifish (Fundulus diaphanus, Teleostei, Cyprinodontidae). Ethology 102:40–49

    Google Scholar 

  • Kuchta R, Scholz T, Brabec J, Bray RA (2008) Suppression of the tapeworm order Pseudophyllidea (Platyhelminthes: Eucestoda) and the proposal of two new orders, Bothriocephalidea and Diphyllobothriidea. Int J Parasitol 38:49–55

    CAS  PubMed  Google Scholar 

  • Kuhn T, Benninghoff T, Karl H, Landry T, Klimpel S (2013) Sealworm Pseudoterranova decipiens ss infection of European smelt Osmerus eperlanus in German coastal waters: ecological implications. Dis Aquat Organ 102:217–224

    PubMed  Google Scholar 

  • Kuris AM (1997) Host behavior modification: an evolutionary perspective. In: Beckage NE (ed) Parasites and pathogens. Chapman & Hall, New York, pp 293–315

    Google Scholar 

  • Lafferty KD (1997) The ecology of parasites in a salt marsh ecosystem. In: Beckage NE (ed) Parasites and Pathogens. Springer, US, pp 316–332

    Google Scholar 

  • Lafferty KD (1999) The evolution of trophic transmission. Parasitol Today 15:111–115

    CAS  PubMed  Google Scholar 

  • Lafferty KD, Kuris AM (2009) Parasitic castration: the evolution and ecology of body snatchers. Trends Parasitol 25:564–572

    PubMed  Google Scholar 

  • Lafferty KD, Morris AK (1996) Altered behavior of parasitized killifish increases susceptibility to predation by bird final hosts. Ecology 77:1390–1397

    Google Scholar 

  • Lafferty KD, Shaw JC (2013) Comparing mechanisms of host manipulation across host and parasite taxa. J Exp Biol 216:56–66

    PubMed  Google Scholar 

  • Lester RJG (1971) The influence of Schistocephalus plerocercoids on the respiration of Gasterosteus and a possible resulting effect on the behavior of the fish. Can J Zool 49:361–366

    CAS  PubMed  Google Scholar 

  • Lester RJG (2005) Isopoda (isopods). In: Rohde K (ed) Marine parasitology. CABI Publishing, Wallingford, pp 138–144

    Google Scholar 

  • Li S, Woo PT (1991) Anorexia reduces the severity of cryptobiosis in Oncorhynchus mykiss. J Parasitol 77:467–471

    CAS  PubMed  Google Scholar 

  • Lima NR, de Souza Azevedo J, da Silva LG, Dansa-Petretski M (2007) Parasitic castration, growth, and sex steroids in the freshwater bonefish Cyphocharax gilbert (Curimatidae) infested by Riggia paranensis (Cymothoidea). Neotropical Ichthyol 5:471–478

    Google Scholar 

  • LoBue CP, Bell MA (1993) Phenotypic manipulation by the cestode parasite Schistocephalus solidus of its intermediate host, Gasterosteus aculeatus, the threespine stickleback. Am Nat 142:725–735

    CAS  PubMed  Google Scholar 

  • López S (1999) Parasitized female guppies do not prefer showy males. Anim Behav 57:1129–1134

    PubMed  Google Scholar 

  • Lyholt HCK, Buchmann K (1996) Diplostomum spathaceum: effects of temperature and light on cercarial shedding and infection of rainbow trout. Dis Aquat Organ 25:169–173

    Google Scholar 

  • MacKenzie K (1999) Parasites as pollution indicators in marine ecosystems: a proposed early warning system. Mar Pollut Bull 38:955–959

    CAS  Google Scholar 

  • Macnab V, Barber I (2012) Some (worms) like it hot: fish parasites grow faster in warmer water, and alter host thermal preferences. Glob Change Biol 18:1540–1548

    Google Scholar 

  • MacKenzie K, Kalavati C (2014) Myxosporean parasites of marine fishes: their distribution in the world’s oceans. Parasitology 141:1709–1717

    CAS  PubMed  Google Scholar 

  • Marcogliese DJ (2005) Transmission of marine parasites. In: Rohde K (ed) Marine parasitology. CABI Publishing, Wallingford, pp 280–286

    Google Scholar 

  • Mattiucci S, Nascetti G (2008) Advances and trends in the molecular systematics of anisakid nematodes, with implications for their evolutionary ecology and host—parasite co-evolutionary processes. Adv Parasitol 66:47–148

    PubMed  Google Scholar 

  • McClelland G (2005) Nematoda (roundworms). In: Rohde K (ed) Marine parasitology. CABI Publishing, Wallingford, pp 104–115

    Google Scholar 

  • Mikheev VN, Pasternak AF, Taskinen J, Valtonen ET (2010) Parasite-induced aggression and impaired contest ability in a fish host. Parasit Vectors 3:17

    PubMed Central  CAS  PubMed  Google Scholar 

  • Milinski M (1984) Parasites determine a predator’s optimal feeding strategy. Behav Ecol Sociobiol 15:35–37

    Google Scholar 

  • Milinski M (1985) Risk of predation of parasitized sticklebacks (Gasterosteus aculeatus L.) under competition for food. Behaviour 93:203–216

    Google Scholar 

  • Milinski M, Bakker TCM (1990) Female sticklebacks use male coloration in mate choice and hence avoid parasitized males. Nature 344:330–333

    Google Scholar 

  • Moles A, Heifetz J (1998) Effects of the brain parasite Myxobolus arcticus on sockeye salmon. J Fish Biol 52:146–151

    Google Scholar 

  • Möller H, Anders K (1983) Krankheiten und Parasiten der Meeresfische. Verlag Heino Möller, Kiel, 258 pp

    Google Scholar 

  • Möller H, Anders K (1986) Diseases and parasites of marine fishes. Verlag Heino Möller, Kiel, 365 pp

    Google Scholar 

  • Möller H, Klatt S (1990) Smelt as host of the sealworm (Pseudoterranova decipiens) in the Elbe estuary. Can Bull Fish Aquat Sci 222:129–138

    Google Scholar 

  • Moodie E (2005) Microsporidia (microsporans). In: Rohde K (ed) Marine parasitology. CABI Publishing, Wallingford, pp 30–34

    Google Scholar 

  • Moore J (1984) Altered behavioral responses in intermediate hosts - an Acanthoceptalan parasite strategy. Am Nat 123:572–577

    Google Scholar 

  • Moore J (2002) Parasites and the behavior of animals. Oxford University Press, New York, 338 pp

    Google Scholar 

  • Moore J (2013) An overview of parasite-induced behavioral alterations - and some lessons from bats. J Exp Biol 216:11–17

    PubMed  Google Scholar 

  • Moore J, Gotelli NJ (1990) A phylogenetic perspective on the evolution of altered host behaviours: A critical look at the manipulation hypothesis. In: Barnard CJ, Behnke JM (eds) Parasitism and host behaviour. Taylor & Francis, London, pp 193–233

    Google Scholar 

  • Mouritsen KN, Poulin R (2003) Parasite-induced trophic facilitation exploited by a non-host predator: a manipulator’s nightmare. Int J Parasitol 33:1043–1050

    PubMed  Google Scholar 

  • Ness JH, Foster SA (1999) Parasite-associated phenotype modifications in threespine stickleback. Oikos 85:127

    Google Scholar 

  • O’Donoghue P (2005) Protistan biodiversity. In: Rohde K (ed) Marine parasitology. CABI Publishing, Wallingford, pp 11–17

    Google Scholar 

  • Orr TSC (1966) Spawning behaviour of rudd, Scardinius erythrophthalmus infested with plerocercoids of Ligula intestinalis. Nature 212:736–736. 11

    Google Scholar 

  • Östlund-Nilsson S, Curtis L, Nilsson G, Grutter A (2005) Parasitic isopod Anilocra apogonae, a drag for the cardinal fish Cheilodipterus quinquelineatus. Mar Ecol Prog Ser 287:209–216

    Google Scholar 

  • Palstra AP, Heppener DFM, Van Ginneken VJT, Székely C, Van den Thillart G (2007) Swimming performance of silver eels is severely impaired by the swim-bladder parasite Anguillicola crassus. J Exp Mar Biol Ecol 352:244–256

    Google Scholar 

  • Poulin R (1993) Age-dependent effects of parasites on anti-predator responses in two New Zealand freshwater fish. Oecologia 96:431–438

    Google Scholar 

  • Poulin R (1994) Meta-analysis of parasite-induced behavioural changes. Anim Behav 48:137–146

    Google Scholar 

  • Poulin R (1995) “Adaptive” changes in the behaviour of parasitized animals: a critical review. Int J Parasitol 25:1371–1383

    CAS  PubMed  Google Scholar 

  • Poulin R (2010) Parasite manipulation of host behavior: an update and frequently asked questions. In: Brockmann HJ (ed) Advances in the study of behavior. Elsevier, Amsterdam, pp 151–186

    Google Scholar 

  • Poulin R, FitzGerald GJ (1989) Shoaling as an anti-ectoparasite mechanism in juvenile sticklebacks (Gasterosteus spp.). Behav Ecol Sociobiol 24:251–255

    Google Scholar 

  • Poulin R, Morand S (2004) Parasite biodiversity. Smithsonian Institution Scholarly Press, Washington, DC, 216 pp

    Google Scholar 

  • Poulin R, Thomas F (1999) Phenotypic variability induced by parasites: extent and evolutionary implications. Parasitol Today 15:28–32

    CAS  PubMed  Google Scholar 

  • Poulin R, Curtis MA, Rau ME (1991) Size, behaviour, and acquisition of ectoparasitic copepods by brook trout, Salvelinus fontinalis. Oikos 61:169

    Google Scholar 

  • Radabaugh DC (1980a) Changes in minnow, Pimephales promelas Rafinesque, schooling behaviour associated with infections of brainencysted larvae of the fluke, Ornithodiplostomum ptychocheilus. J Fish Biol 16:621–628

    Google Scholar 

  • Radabaugh DC (1980b) Encystment site selection in the brain-inhabiting metacercariae of Ornithodiplostomum ptychocheilus (Trematoda: Strigeoidea). J Parasitol 66:183–184

    Google Scholar 

  • Rees G (1957) Cercaria diplostomi phoxini (Faust), a furcocercaria which develops into Diplostomulum phoxini in the brain of the minnow. Parasitology 47:126–137

    Google Scholar 

  • Reusch TB, Häberli MA, Aeschlimann PB, Milinski M (2001) Female sticklebacks count alleles in a strategy of sexual selection explaining MHC polymorphism. Nature 414:300–302

    CAS  PubMed  Google Scholar 

  • Rohde K (2005) Marine parasitology. CABI Publishing, Wallingford, p 565

    Google Scholar 

  • Rose JD, Marrs GS, Lewis C, Schisler G (2000) Whirling disease behavior and its relation to pathology of brain stem and spinal cord in rainbow trout. J Aquat Anim Health 12:107–118

    Google Scholar 

  • Rossiter W (2013) Current opinions: zeros in host–parasite food webs: are they real? Int J Parasitol Parasites Wildl 2:228–234

    PubMed Central  PubMed  Google Scholar 

  • Santos EGN, Cunha RA, Santos Portes C (2011) Behavioral responses of Poecilia vivipara (Osteichthyies: Cyprinodontiformes) to experimental infections of Acanthocollaritrema umbilicatum (Digenea: Cryptogonimidae). Exp Parasitol 127:522–526

    Google Scholar 

  • Santos EGN, Santos Portes C (2013) Parasite-induced and parasite development-dependent alteration of the swimming behavior of fish hosts. Acta Tropica 127:56–62

    Google Scholar 

  • Sasal P, Thomas F (2005) Parasite induced changes in host behaviour and morphology. In: Rohde K (ed) Marine parasitology. CABI Publishing, Wallingford, pp 259–263

    Google Scholar 

  • Scott M (1985) Experimental epidemiology of Gyrodactylus bullatarudis (Monogenea) on guppies (Poecilia reticulata): short- and long-term studies. In: Rollinson E, Anderson RM (eds) Ecology and genetics of host-parasite interactions. Academic, London, pp 21–38

    Google Scholar 

  • Seppälä O, Karvonen A, Tellervo Valtonen E (2004) Parasite-induced change in host behaviour and susceptibility to predation in an eye fluke–fish interaction. Anim Behav 68:257–263

    Google Scholar 

  • Seppälä O, Valtonen ET, Benesh DP (2008) Host manipulation by parasites in the world of dead-end predators: adaptation to enhance transmission? Proc R Soc B Biol Sci 275:1611–1615

    Google Scholar 

  • Shirakashi S, Goater CP (2002) Intensity-dependent alteration of minnow (Pimephales promelas) behavior by a brain- encysting trematode. J Parasitol 88:1071–1074

    Google Scholar 

  • Shirakashi S, Goater CP (2005) Chronology of parasite-induced alteration of fish behaviour: effects of parasite maturation and host experience. Parasitology 130:177–183

    CAS  PubMed  Google Scholar 

  • Smith JW (1972) The blood flukes (Digenea: Sanguinicolidae and Spirorchidae) of cold-blooded vertebrates and some comparison with the schistosomes. Helminthol Abstr 41:161–204

    Google Scholar 

  • Smith RS, Kramer DL (1987) Effects of a cestode (Schistocephalus sp.) on the response of ninespine sticklebacks (Pungitius pungitius) to aquatic hypoxia. Can J Zool 65:1862–1865

    Google Scholar 

  • Smothers JF, von Dohlen C, Smith LH, Spall RD (1994) Molecular evidence that the myxozoan protists are metazoans. Science 265:1719–1721

    CAS  PubMed  Google Scholar 

  • Sprengel G, Lüchtenberg H (1991) Infection by endoparasites reduces maximum swimming speed of European smelt Osmerus eperlanus and European eel Anguilla anguilla. Dis Aquat Organ 11:31–35

    Google Scholar 

  • Steinbach Elweell LC, Eagle Stromberg K, Ryce EKN, Bartholomew JL (2009) Whirling disease in the United States. A summary of progress in research and management. Montana Water Center. Bozeman

    Google Scholar 

  • Swearer SE, Robertson DR (1999) Life history, pathology, and description of Kudoa ovivora n. sp. (Myxozoa, Myxosporea): an ovarian parasite of Caribbean labroid fishes. J Parasitol 85:337–353

    Google Scholar 

  • Sweeting RA (1976) Studies on Ligula intestinalis (L.) effects on a roach population in a gravel pit. J Fish Biol 9:515–522

    Google Scholar 

  • Sweeting RA (1977) Studies on Ligula intestinalis Some aspects of the pathology in the second intermediate host. J Fish Biol 10:43–50

    Google Scholar 

  • Szidat L (1969) Structure, development, and behaviour of new Strigeatoid metacercariae from subtropical fishes of South America. J Fish Res Bd Can 26:753–786

    Google Scholar 

  • Thomas PT, Woo PTK (1992) Anorexia in rainbow trout, Oncorhynchus mykiss (Walbaum), infected with Cryptobia salmositica (Sarcomastigophora: Kinetoplastida): its onset and contribution to the immunodepression. J Fish Dis 15:443–447

    Google Scholar 

  • Thomas F, Adamo S, Moore J (2005) Parasitic manipulation: where are we and where should we go? Behav Processes 68:185–199

    PubMed  Google Scholar 

  • Thomas F, Rigaud T, Brodeur J (2012) Evolutionary routes leading to host manipulation by parasites. In: Hughes DP, Brodeur J, Thomas F (eds) Host manipulation by parasites. Oxford University Press, Oxford, pp 16–33

    Google Scholar 

  • Tierney JF, Huntingford FA, Crompton DWT (1993) The relationship between infectivity of Schistocephalus solidus (Cestoda) and anti-predator behaviour of its intermediate host, the three-spined stickleback, Gasterosteus aculeatus. Anim Behav 46:603–605

    Google Scholar 

  • Trubiroha A, Kroupova H, Wuertz S, Frank SN, Sures B, Kloas W (2010) Naturally-induced endocrine disruption by the parasite Ligula intestinalis (Cestoda) in roach (Rutilus rutilus). Gen Comp Endocrinol 166:234–240

    CAS  PubMed  Google Scholar 

  • Ward AJ, Duff AJ, Krause J, Barber I (2005) Shoaling behaviour of sticklebacks infected with the microsporidian parasite, Glugea anomala. Environ Biol Fishes 72:155–160

    Google Scholar 

  • Weissenberg R (1968) Intracellular development of the microsporidan Glugea anomala Moniez in hypertrophying migratory cells of the fish Gasterosteus aculeatus L., an example of the formation of “xenoma” tumors. J Protozool 15:44–57

    Google Scholar 

  • Whittington I (2005) Monogenea Monopisthocotylea (ectoparasitic flukes). In: Rohde K (ed) Marine parasitology. CABI Publishing, Wallingford, pp 63–72

    Google Scholar 

  • Windsor DA (1998) Most of the species on Earth are parasites. Int J Parasitol 28:1939–1941

    CAS  PubMed  Google Scholar 

  • Wolf K, Markiw ME, Hiltunen JK (1986) Salmonid whirling disease: Tubifex tubifex (Müller) identified as the essential oligochaete in the protozoan life cycle. J Fish Dis 9:83–85

    Google Scholar 

  • Woo PTK (1994) Flagellate parasites of fish. In: Kreier JP (ed) Parasitic protozoa, vol 8, 2nd edn. Academic, London, pp 1–80

    Google Scholar 

  • Woo PTK (2011) Cryptobia (Trypanoplasma) salmositica. In: Woo PTK, Buchmann K (eds) Fish parasites: pathobiology and protection. CABI Publishing, Wallingford, pp 30–54

    Google Scholar 

  • Wright HA, Wootton RJ, Barber I (2006) The effect of Schistocephalus solidus infection on meal size of three-spined stickleback. J Fish Biol 68:801–809

    Google Scholar 

  • Yokoyama H, Grabner D, Shirakashi S (2012) Transmission biology of the Myxozoa. In: Carvalho E (ed) Health and environment in aquaculture. INTECH Open Access Publisher, Rijeka, Croatia

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Kuhn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kuhn, T., Klapper, R., Münster, J., Dörge, D.D., Kochmann, J., Klimpel, S. (2015). Remote Control: Parasite Induced Phenotypic Changes in Fish. In: Mehlhorn, H. (eds) Host Manipulations by Parasites and Viruses. Parasitology Research Monographs, vol 7. Springer, Cham. https://doi.org/10.1007/978-3-319-22936-2_9

Download citation

Publish with us

Policies and ethics