Skip to main content

Can Parasites Change Thermal Preferences of Hosts?

  • Chapter

Part of the book series: Parasitology Research Monographs ((Parasitology Res. Monogr.,volume 7))

Abstract

Scientific literature provides many examples of parasite-induced changes in thermal preferences of animals. These alterations can be interpreted as a defense response of hosts, a by-product of parasitic invasion or host manipulation aimed at increasing chances of parasite transmission. In this chapter we present an overview of ectothermic host-parasite relationships using snail-parasite, insect-parasite, and fish-parasite interactions to provide an answer to the initial question. Interestingly, in all the above examples (regardless of the systematic position of hosts) the invasion of eukaryotic parasites is correlated with host thermal behavior, benefiting parasites. It should be emphasized that although numerous analysis of this phenomenon sound convincing, without thorough understanding of the molecular basis of thermal behavior of ectotherms they fail to provide sufficient explanation. We are convinced that research on the mechanism of thermal preferences of ectothermic animals in terms of physiology, metabolism, neuromodulation, and immunology will clarify the suggested impact of parasites on thermal behavior of their hosts.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adamo SA (1998) The specificity of behavioral fever in the cricket Acheta domesticus. J Parasitol 84:529–533

    CAS  PubMed  Google Scholar 

  • Adamo SA, Lovett MME (2011) Some like it hot: the effects of climate change on reproduction, immune function and disease resistance in the cricket Gryllus texensis. J Exp Biol 214:1997–2004

    PubMed  Google Scholar 

  • Aggiletta MJ Jr, Steury TD, Sears MW (2004) Temperature, growth rate, and body size in Ectotherms: fitting pieces of a life-history puzzle. Integr Comp Biol 44:498–509

    Google Scholar 

  • Amaral JPS, Marvin GA, Hutchison VH (2002) The influence of bacterial lipopolysaccharide on the thermoregulation of the box turtle Terrapene carolina. Phys Biol Zool 75:273–282

    Google Scholar 

  • Aziz MD, Raut SK (1996) Thermal effect on the life-cycle parameters of the medically important freshwater snail species Lymnaea (Radix) luteola (Lamarck). Mem Inst Oswaldo Cruz 91:119–128

    Google Scholar 

  • Bailey SER (1969) The responses of sensory receptors in the skin of the green lizard, Lacerta viridis, to mechanical and thermal stimulation. Comp Biochem Physiol 29:161–172

    CAS  PubMed  Google Scholar 

  • Bates AE, Leiterer F, Wiedeback ML, Poulin R (2011) Parasitized snails take the heat: a case of host manipulation? Oecologia 167:613–621

    CAS  PubMed  Google Scholar 

  • Bayoh MN, Lindsay SW (2003) Effect of temperature on the development of the aquatic stages of Anopheles gambiae sensu stricto (Diptera: Culicidae). Bull Entomol Res 93:375–381

    CAS  PubMed  Google Scholar 

  • Bernheim HA, Kluger MJ (1976) Fever and antypyresis in the lizard Dipsosaurus dorsalis. Am J Physiol 231:198–203

    CAS  PubMed  Google Scholar 

  • Blanar CA, Munkittrick KR, Houlahan J, Maclatchy DL, Marcogliese DJ (2009) Pollution and parasitism in aquatic animals: a meta-analysis of effect size. Aquat Toxicol 93:18–28

    CAS  PubMed  Google Scholar 

  • Blanford S, Thomas MB (1999) Host-thermal biology: the key to understanding host-pathogen interactions and microbial pest control? Agr Forest Entomol 1:195–202

    Google Scholar 

  • Blanford S, Thomas MB (2000) Thermal behavior of two acridid species: effects of habitat and season on body temperature and the potential impact on biocontrol with pathogens. Environ Entomol 29:1060–1069

    Google Scholar 

  • Blanford S, Read AF, Thomas MB (2009) Thermal behaviour of Anopheles stephensi in response to infection with malaria and fungal entomopathogens. Malar J 8:72, DOI:10.1186/1475-2875-8-72

  • Blanford S, Thomas MB, Langewald J (1998) Behavioural fever in the Senegalense grasshopper, Oedaleus senegalensis, and its implications for biological control using pathogens. Ecol Entomol 23:9–14

    Google Scholar 

  • Boltaña S, Rey S, Roher N, Vargas R, Huerta M, Huntingford FA, Goets WF, Moore J, Garcia-Valtanen P, Estepa A, MacKenzie S (2013) Behavioural fever is asynergic signal amplifying the innate immune response. Proc R Soc B 280:2013 1381, http://dx.doi.org/10.1098/rspb.2013.1381

    Google Scholar 

  • Boorstein SM, Ewald PW (1987) Costs and benefits of behavioural fever in Melanoplus sanguinipes infected by Nosema acridophagus. Physiol Zool 60:586–595

    Google Scholar 

  • Britton DK, McMahon RF (2004) Seasonal and artificially elevated temperatures influence bioenergetic allocation patterns in the common pond snail, Physella virgata. Physiol Biochem Zool 77:187–196

    PubMed  Google Scholar 

  • Bronstein SM, Conner WE (1984) Endotoxin-induced behavioural fever in the Madagascar cockroach. Gromphadorhina portentosa. J Ins Physiol 30:327–330

    CAS  Google Scholar 

  • Brooks DR, Hoberg EP (2007) How will global climate change affect parasite–host assemblages? Trends Parasitol 23:571–574

    PubMed  Google Scholar 

  • Bullard SA, Overstreet RM (2008) Digeneans as enemies of fishes. In: Eiras J, Segner H, Wahil T, Kapoor BG (eds) Fish diseases. Science Publishers, Enfield, New Hampshire, pp 817–976

    Google Scholar 

  • Butler MW, Stahlschmidt ZR, Ardia DR, Davis S, Davis J, Guillette LJ Jr, Johnson N, McCormick SD, McGraw KJ, DeNardo DF (2013) Thermal sensitivity of immune function: evidence against a generalist-specialist trade-off among endothermic and ectothermic vertebrates. Am Nat 181:761–774

    PubMed  Google Scholar 

  • Cabanac M, Rossetti Y (1987) Fever in snails, reflection on a negative result. Comp Biochem Physiol A 87:1017–1020

    CAS  PubMed  Google Scholar 

  • Campbell J, Kessler B, Mayack C, Naug D (2010) Behavioural fever in infected honeybees: parasitic manipulation or coincidental benefit? Parasitology 137:1487–1496

    PubMed  Google Scholar 

  • Casterlin ME, Reynolds WW (1977) Behavioral fever in anuran amphibian larvae. Life Sci 20:593–596

    CAS  PubMed  Google Scholar 

  • Casterlin ME, Reynolds WW (1979a) Behavioral thermoregulation in the grass shrimp, Palaemonetes vulgaris (Say). Rev Can Biol 38:45–46

    CAS  PubMed  Google Scholar 

  • Casterlin ME, Reynolds WW (1979b) Fever induced in marine arthropods by prostaglandin E1. Life Sci 25:1601–1603

    CAS  PubMed  Google Scholar 

  • Casterlin ME, Reynolds WW (1980a) Behavioral response of the New England dog whelk, Nassarius trivittatus, to a temperature gradient. Hydrobiologia 69:79–81

    Google Scholar 

  • Casterlin ME, Reynolds WW (1980b) Fever and antipyresis in the crayfish Cambarus bartoni. J Physiol (Lond) 303:417–421

    CAS  Google Scholar 

  • Christensen BM, LaFond MM (1986) Parasite-induced suppression of the immune response in Aedes aegypti by Brugia pahangi. J Parasitol 72:216–219

    CAS  PubMed  Google Scholar 

  • Cichy A (2013) Rozprzestrzenienie i różnorodność przywr digenicznych (Trematoda: Digenea) w populacjach wodnych gatunków ślimaków (Mollusca: Gastropoda) z terenu Pojezierza Brodnickiego. PhD thesis, Nicolaus Copernicus University

    Google Scholar 

  • Cichy A, Faltynkova A, Żbikowska E (2011) Cercariae (Trematoda, Digenea) in European freshwater snails a checklist of records from over one hundred years. Folia Malacol 19:165–189

    Google Scholar 

  • Clemmer TP, Fisher CJ, Bone RC, Slotman GJ, Metz CA, Thomas FO (1992) Hypothermia in the sepsis syndrome and clinical outcome. Crit Care Med 20:1395–1401

    CAS  PubMed  Google Scholar 

  • Collins WE, Jeffery GM (2007) Plasmodium malariae: parasite and disease. Clin Microbiol Rev 20:579–592

    PubMed Central  PubMed  Google Scholar 

  • Combes C (1999) Ekologia i ewolucja pasożytnictwa. Długotrwałe wzajemne oddziaływania. Wydawnictwo Naukowe PWN, Warszawa, 628pp

    Google Scholar 

  • Combes C, Albaret JL, Arvy L, Bartoli P, Bayssade–Dufour C, Deblom S, Durette-Desset MC, Gabrion C, Jourdane J, Lambert A, Leger N, Maillerd C, Matricon M, Nassi H, Prevost G, Richard J, Theron A (1980) Atlas Mondiale des Cercaires. Museum National d’Histoire Naturelle, Paris, 235pp

    Google Scholar 

  • Costil K (1994) Influence of temperature on survival and growth of two freshwater planorbid species, Planorbarius corneus and Planorbis planorbis. J Moll Stud 60:223–235

    Google Scholar 

  • Coyne VC (2011) The importance of ATP in the immune system of molluscs. Inv Surv J 8:48–55

    Google Scholar 

  • Craig MH, Snow RW, Sueur D (1999) A climate based distribution model of malaria transmission in sub-Saharan Africa. Parasitol Today 15:105–111

    CAS  PubMed  Google Scholar 

  • Crowden AE, Broom DM (1980) Effects of eye-fluke, Diplostomum spathaceum, on the behavior of dace (Leuciscus leuciscus). Anim Behav 28:287–294

    Google Scholar 

  • Dawkins R (2012) Host manipulation by parasites. Oxford University Press, Oxford, 240pp

    Google Scholar 

  • Dobson AP (2009) Climate variability, global change, immunity, and the dynamics of infectious diseases. Ecology 90:920–927

    PubMed  Google Scholar 

  • Dobson A, Carper R (1992) Global warming and potential changes in host-parasite and disease-vector relationships. In: Peters RL, Lovejoy TE (eds) Global warming and biodiversity. Yale University Press, New Haven, pp 201–207

    Google Scholar 

  • Eling W, Hooghof J, van de Vegte-Bolmer M, Sauerwein R, Van Gemert G (2001) Tropical temperatures can inhibit development of the human malaria parasite Plasmodium falciparum in the mosquito. In: Proceedings of the Section Experimental and Applied Entomology. Netherlands Entomological Society, Amsterdam, pp 151–156

    Google Scholar 

  • Elliot SL, Blanford S, Thomas MB (2002) Host-pathogen interactions in a varying environment: temperature, behavioural fever and fitness. Proc R Soc Lond 269:1599–1607

    Google Scholar 

  • Eure H (1976) Seasonal abundance of Neoechinorhynchus cylindratus taken from largemouth bass (Micropterus salmoides) in a heated reservoir. Parasitology 73:355–370

    CAS  PubMed  Google Scholar 

  • Faltýnková A, Našincová V, Kablasková L (2007) Larval trematodes (Digenea) of great pond snails, Lymnaea stagnalis (L.), (Gastropoda, Pulmonata) in Central Europe: a survey of species and key to their identification. Parasite 14:39–51

    PubMed  Google Scholar 

  • Faltýnková A, Našincová V, Kablasková L (2008) Larval trematodes (Digenea) of planorbid snails (Gastropoda:Pulmonata) in Central Europe: a survey of species and key to their identification. Syst Parasitol 69:155–178

    PubMed  Google Scholar 

  • Fialho RG, Schall JJ (1995) Thermal ecology of a malarial parasite and its insect vector: consequences for the parasite’s transmission success. J Anim Ecol 64:553–562

    Google Scholar 

  • Fischer H, Freeman RS (1973) The role of plerocercoids in the biology of Proteocephalus ambloplitis (Cestoda) maturing in smallmouth bass. Can J Zool 51:133–141

    CAS  PubMed  Google Scholar 

  • Fredensborg BL, Mouritsen KN, Poulin R (2005) Impact of trematodes on host survival and population density in the intertidal gastropod Zeacumantus subcarinatus. Mar Ecol Prog Ser 290:109–117

    Google Scholar 

  • Fried B, Graczyk TK (2000) Echinostomes as experimental models for biological research. Kluwer Academic Publishers, Dordrecht/Boston, p 273

    Google Scholar 

  • Gilbert N, Raworth DA (1996) Insects and temperature: a general theory. Can Entomol 128:1–13

    Google Scholar 

  • Gillooly J, Charnov EL, West GB, Savage VM, Brown JH (2002) Effects of size and temperature on developmental time. Nature 417:70–73

    CAS  PubMed  Google Scholar 

  • Graystock P, Yates K, Darvill B, Goulson D, Hughes WHO (2013) Emerging dangers: deadly effects of an emergent parasite in a new pollinator host. Int J Parasitol 114:114–119

    Google Scholar 

  • Gutierrez A, Pointer JP, Yong M, Sanchez J, Theron A (2003) Evidence of phenotypic differences between resistant and susceptible isolates of Pseudosuccinea columella (Gastropoda: Lymnaeidae) to Fasciola hepatica (Trematoda: Digenea) in Cuba. Parasitol Res 90:129–134

    PubMed  Google Scholar 

  • Harvell CD, Kim K, Burkholder JM, Colwell RR, Epstein PR, Grimes DJ, Hofman EE, Lip EK, Osterhaus ADME, Overstreet RM, Porter JW, Smith GW, Vasta GR (1999) Emerging marine diseases-climate links and anthropogenic factors. Science 285:1505–1510

    CAS  PubMed  Google Scholar 

  • Harvell CD, Mitchell CE, Ward JR, Altizer S, Dobson AP, Ostfeld RS, Samuel MD (2002) Ecology – climate warming and disease risks for terrestrial and marine biota. Science 296:2158–2162

    CAS  PubMed  Google Scholar 

  • Hechinger RF, Laffarty KD, Mancini FT, Warner RR, Kuris AM (2009) How large is the hand in the puppet? Ecological and evolutionary factors affecting the body mass of 15 trematode parasitic castrators in their snail host. Evol Ecol 23:651–667

    Google Scholar 

  • Hodasi JK (1976) The effects of low temperature on Lymnaea truncatula. Z Parasitenkd 48:281–286

    CAS  PubMed  Google Scholar 

  • Hoglund J, Thulin J (1990) The epidemiology of the metacercariae of Diplostomum baeri and Diplostomum spathaceum in perch (Perca fluviatilis) from the warm water effluent on a nuclear-power station. J Helminthol 64:139–150

    CAS  PubMed  Google Scholar 

  • Howes RE, Dewi M, Piel FB, Monteiro WM, Battle KE, Messina JP, Sakuntabhai A, Satyagraha AW, Williams TN, Baird JK, Hay SJ (2013) Spatial distribution of G6PD deficiency variants across malaria-endemic regions. Malar J 12:418–433

    PubMed Central  PubMed  Google Scholar 

  • Huang W-F, Jiang J-H, ChenY-W, Wang Ch-H (2007) A Nosema ceranae isolate from the honeybee Apis mellifera. Apidologie 38:30–37

    Google Scholar 

  • Hurford A, Day T (2013) Immune evasion and the evolution of molecular mimicry in parasites. Evolution 67:2889–2904

    PubMed  Google Scholar 

  • Hylleberg J (1975) The effect of salinity and temperature on egestion in mud snails (Gastropoda: Hydrobiidae). Oecologia 21:279–289

    Google Scholar 

  • Inglis GD, Johnson DL, Goettel MS (1996) Effects of temperature on thermoregulation on mycosis by Beauveria bassiana in grasshoppers. Biol Contr 7:131–139

    Google Scholar 

  • Jonhston LA, Bennett AF (1996) Animals and temperature: phenotypic and evolutionary adaptation. Society of Experimental Biology. Seminar Series. Cambridge Univ Press, Cambridge/New York, 419pp

    Google Scholar 

  • Kalsbeek V (2001) Field studies of Entomophthora (Zygomycetes: Entomophthorales) – induced behavioral fever in Musca domestica (Diptera: Muscidae) in Denmark. Biol Contr 21:264–273

    Google Scholar 

  • Kavaliers M (1992) Opioid systems, behavioral regulation and shell polymorphism in the land snail, Cepaea nemoralis. J Comp Physiol 162:172–178

    CAS  Google Scholar 

  • Kavaliers M, Colwell DD (1992) Parasitism, opioid systems and host behaviour. Adv Neuroimmunol 2:287–295

    Google Scholar 

  • Khan RA (2012) Host-parasite interactions in some fish species. J Parasitol Res. doi:10.1155/2012/237280

    PubMed Central  PubMed  Google Scholar 

  • Kingsolver J, Watt W (1983) Thermoregulatory strategies in Colias Butterflies: thermal stress and the limits of adaptation in temporally varying environments. Am Nat 121:32–55

    Google Scholar 

  • Kirby MJ, Lindsay SW (2004) Responses of adult mosquitoes of two sibling species, Anopheles arabiensis and A. gambiae s.s. (Diptera: Culicidae) to high temperatures. Bull Entomol Res 94:441–448

    CAS  PubMed  Google Scholar 

  • Kluger MJ (1979) Fever in ectotherms: evolutionary implications. Am Zool 19:295–304

    CAS  Google Scholar 

  • Kobayashi M, Inagaki S, Kawase S (1981) Effect of high temperature on the development of nuclear polyhedrosis virus in the silkworm, Bombyx mori. J Invertebr Pathol 38:386–394

    Google Scholar 

  • Koprivnikar J, Poulin R (2009) Effects of temperature, salinity, and water level on the emergence of marine cercariae. Parasitol Res 105:957–965

    PubMed  Google Scholar 

  • Lafferty KD (2009) The ecology of climate change and infectious diseases. Ecology 90:888–900

    PubMed  Google Scholar 

  • Lefcort H, Bayne CJ (1991) Thermal preferences of resistant and susceptible strains of Biomphalaria glabrata (Gastropoda) exposed to Schistosoma mansoni (Trematoda). Parasitology 103:357–362

    PubMed  Google Scholar 

  • Lefcort H, Eiger SM (1993) Antipredatory behaviuor of feverish tadpoles: implications for pathogen transmission. Behaviour 126:13–27

    Google Scholar 

  • Lefèvre T, Roche B, Poulin R, Hurd H, Renaud F, Thomas F (2008) Exploitation of host compensatory responses: the “must” of manipulation? Trends Parasitol 24:435–439

    PubMed  Google Scholar 

  • Li J, Chen W, Wu J, Peng W, An J, Schmid-Hempel P, Schmid-Hempel R (2012) Diversity of Nosema associated with bumblebees (Bombus spp.) from China. Int J Parasitol 42:49–61

    CAS  PubMed  Google Scholar 

  • Loot G, Francisco P, Santoull F, Lek S, Guegan JF (2001) The three hosts of the Ligula intestinalis (Cestoda) life cycle in Lavernose-Lacasse gravel pit, France. Arch Hydrobiol 152:511–525

    Google Scholar 

  • Louis C, Jourdan M, Cabanac M (1986) Behavioral fever and therapy in a rickettsia-infected Orthoptera. Am J Physiol 250:R991–R995

    CAS  PubMed  Google Scholar 

  • Lv S, Zhou XN, Zhang Y, Liu HX, Zhu D, Yin WG, Steinmann P, Wang XH, Jia TW (2006) The effect of temperature on the development of Angiostrongylus cantonensis (Chen 1935) in Pomacea canaliculata (Lamarck 1822). Parasitol Res 99:583–587

    PubMed  Google Scholar 

  • Mackauer M, Sequeira R (1993) Patterns of development in insect parasites. In: Beckage NE, Thompson SN, Federici BA (eds) Parasites and pathogens of insects, vol 1. Academic, New York, pp 1–23

    Google Scholar 

  • Macnab V, Barber I (2011) Some (worms) like it hot: fish parasites grow faster in warmer water, and alter host thermal preferences. Global Change Biol 18:1540–1548. doi: 10.1111/j.1365-2486.2011.02595.x

  • Maekawa E, Aonuma H, Nelson B, Yoshimura A, Tokunaga F, Fukumoto S, Kanuka H (2011) The role of proboscis of the malaria vector mosquito Anopheles stephensi in host-seeking behavior. Parasit Vectors 4:10. doi:10.1186/1756-3305-4-10

    PubMed Central  PubMed  Google Scholar 

  • Maillard C (1976) Distomatoses de poissons en milieu lagunaire. PhD thesis, Universite des Sciences et Techniques du Languedoc, Montpellier, 383pp

    Google Scholar 

  • Marcgoliese DJ (2008) The impact of climate change on the parasites and infectious diseases of aquatic animals. Rev Sci Tech OIE 27:467–484

    Google Scholar 

  • Martin-Hernandez R, Meana A, Garcia-Palencia P, Marin P, Botias C, Garrido-Bailon E, Barrios L, Higes M (2009) Effect of temperature on the biotic potential of honeybee microsporidia. Appl Environ Microbiol 75:2554–2557

    PubMed Central  CAS  PubMed  Google Scholar 

  • Mas-Coma S, Valero MA, Bargues MD (2008) Effects of climate change on animal and zoonotic helminthiases. Rev Sci Tech Off Int Epiz 27:443–452

    CAS  Google Scholar 

  • Meerburg BG, Kijlstra A (2009) Changing climate-changing pathogens: Toxoplasma gondii in North-Western Europe. Parasitol Res 105:17–24

    PubMed Central  PubMed  Google Scholar 

  • Meuleman EA, Huyer AR, Mooij JH (1983) Maintenance of the life cycle of Trichobilharzia ocellata via the duck Anas platyrhynchos and the pond snail Lymnaea stagnalis. Neth J Zool 34:414–417

    Google Scholar 

  • Mikheev VN (2011) Monoxenous and heteroxenous fish parasites manipulate the behavior of their hosts in different ways. Zh Obshch Biol 72:183–197

    CAS  PubMed  Google Scholar 

  • Minchella DJ (1985) Host life-history variation in response to parasitism. Parasitology 90:205–216

    Google Scholar 

  • Moore J (2002) Parasites and the behavior of animals. Oxford University Press, New York, 338pp

    Google Scholar 

  • Moore J, Freehling M (2002) Cockroach hosts in thermal gradients suppress parasite development. Oecologia 133:261–266

    Google Scholar 

  • Moore J, Gotelli NJ (1990) A phylogenetic perspective on the evolution of altered host behaviours: a critical look at the manipulation hypothesis. In: Behnke JM, Bernard CJ (eds) Parasitism and host behaviour. Taylor and Francis, London, pp 193–203

    Google Scholar 

  • Muller CB, Schmid-Hempel P (1993) Exploitation of cold temperature as defence against parasitoids in bumblebees. Nature 363:65–67

    Google Scholar 

  • Muñoz JPL, Finke GR, Camus PA, Bozinovic F (2005) Thermoregulatory behavior, heat gain and thermal tolerance in the periwinkle Echinolittorina peruviana in central Chile. Comp Bioch Physiol A 142:92–98

    Google Scholar 

  • Murray RW (1959) The response of the ampullae of Lorenzini to combined stimulation by temperature change and weak direct currents. J Physiol 145:1–13

    PubMed Central  CAS  PubMed  Google Scholar 

  • Myhre K, Cabanac M, Myhre G (1997) Fever and behavioural temperature regulation in the frog Rana esculenta. Acta Physiol Scand 101:219–229

    Google Scholar 

  • Nakamura K (2011) Central circuitries for body temperature regulation and fever. Am J Physiol Regul Integr Comp Physiol 301:R1207–R1228

    CAS  PubMed  Google Scholar 

  • Navarro JM, Leiva GE, Gallardo CS, Varela C (2002) Influence of diet and temperature on physiological energetics of Chorus giganteus (Gastropoda: Muricidae) during reproductive conditioning. N Z J Mar Freshw Res 36:321–332

    Google Scholar 

  • Noden BH, Kent MD, Beier JC (1995) The impact of variationsin temperature on early Plasmodium falciparum development in Anopheles stephensi. Parasitology 5:539–545

    Google Scholar 

  • Ouedraogo RM, Cusson M, Goettel MS, Brodeur J (2003) Inhibition of fungal growth in thermoregulating locusts, Locusta migratoria, infected by the fungus Metarhizium anisopliae var acridum. J Invertebr Pathol 82:103–109

    PubMed  Google Scholar 

  • Ouedraogo RM, Goettel MS, Brodeur J (2004) Behavioral thermoregulation in the migratory locust: a therapy to overcome fungal infection. Oecologia 138:312–319

    CAS  PubMed  Google Scholar 

  • Paull SH, Johnson PTJ (2011) High temperature enhances host pathology in a snail–trematode system: possible consequences of climate change for the emergence of disease. Freshwater Biol 56:767–778

    Google Scholar 

  • Pérez-del-Olmo A, Georgieva S, Pula HJ, Kostadinova A (2014) Molecular and morphological evidence for three species of Diplostomum (Digenea: Diplostomidae), parasites of fishes and fish-eating birds in Spain. Parasit Vectors 7:502. doi:10.1186/s13071-014-0502-x

    PubMed Central  PubMed  Google Scholar 

  • Plischuk S, Martín-Hernández R, Prieto L, Lucía M, Botías C, Meana A, Abrahamovich AH, Lange C, Higes M (2009) South American native bumblebees (Hymenoptera:Apidae) infected by Nosema ceranae (Microsporidia), an emerging pathogen of honeybees (Apis mellifera). Environ Microbiol Rep 1:131–135

    PubMed  Google Scholar 

  • Ploomi A, Must A, Merivee E, Luik A, Mänd M (2004) Electrophysiological characterization of the cold receptors in the ground beetle Pterostichus oblongopunctatus. Agr Res 2:99–106

    Google Scholar 

  • Portner HO (2002) Climate variations and the physiological basis of temperature dependent biogeography: systemic to molecular hierarchy of thermal tolerance in animals. Comp Biochem Physiol A 132:739–761

    CAS  Google Scholar 

  • Poulin R (1995) “Adaptive” change in the behavior of parasitized animals: a critical review. Int J Parasitol 25:1371–1383

    CAS  PubMed  Google Scholar 

  • Reynolds WW (1977a) Temperature as a proximate factor in orientation behavior. J Fish Res Board Can 34:734–739

    Google Scholar 

  • Reynolds WW (1977b) Fish orientation behavior: an electronic device for studying simultaneous responses to two variables. J Fish Res Board Can 34:300–304

    Google Scholar 

  • Reynolds WW (1979) Perspective and introduction to the symposium: thermoregulation in ectotherms. Am Zool 19:193–194

    Google Scholar 

  • Reynolds WW, Casterlin ME (1976) Thermal preferenda and behavioral thermoregulation in three centrarchid fishes. In: Esch GW, McFarlane RW (eds) Thermal ecology II. Technical Information Service, Springfield, pp 185–190

    Google Scholar 

  • Reynolds WW, Casterlin ME (1979a) Behavioral thermoregulation and the “final preferendum” paradigm. Am Zool 19:211–224

    Google Scholar 

  • Reynolds WW, Casterlin ME (1979b) Thermoregulatory behavior of the primitive arthropod Limulus polyphemus in an electronic shuttlebox. J Thermal Biol 4:165–166

    Google Scholar 

  • Reynolds WW, Casterlin ME, Covert JB (1976) Behavioural fever in teleost fishes. Nature 259:41–42

    CAS  PubMed  Google Scholar 

  • Richards FP, Reynolds WW, McCauley RW, Crawshaw LI, Coutant CC, Gift JJ (1977) Temperature preference studies in environmental impact assessments: an overview with procedural recommendations. J Fish Res Board Can 34:728–761

    Google Scholar 

  • Roode JC, Lefevre T (2012) Behavioral immunity in insects. Insects 3:789–820

    PubMed Central  PubMed  Google Scholar 

  • Sokolova IM, Granovitch AI, Berger VJ, Johannesson K (2000) Intraspecific physiological variability of the gastropod Littorina saxatilis related to the vertical shore gradient in White and North Seas. Mar Biol 137:297–308

    Google Scholar 

  • Sorensen RE, Minchella DJ (1998) Parasite influences on host life history: Echinostoma revolutum parasitism of Lymnaea elodes snails. Oecologia 115:188–195

    Google Scholar 

  • Stanley D (2006) Prostaglandins and other eicosanoids in insects: biological significance. Annu Rev Entomol 51:25–44

    CAS  PubMed  Google Scholar 

  • Starks PT, Blackie CA, Seeley TD (2000) Fever in honeybee colonies. Naturwissenschaften 87:229–231

    CAS  PubMed  Google Scholar 

  • Steiner AA, Branco LGS (2003) Fever and anapyrexia in systemic inflammation: intracellular signaling by cyclic nucleotides. Front Biosci 8:1398–1408

    Google Scholar 

  • Studer A, Poulin R (2014) Analysis of trait mean and variability versus temperature in trematode cercariae: is there scope for adaptation to global warming? Int J Parasitol 44:403–413

    CAS  PubMed  Google Scholar 

  • Studer A, Thieltges DW, Poulin R (2010) Parasites and global warming: net effects of temperature on an intertidal host-parasite system. Mar Ecol Prog Ser 415:11–22

    Google Scholar 

  • Sturrock RF, Sturrock BM (1972) The influence of temperature on the biology of Biomphalaria glabrata (Say), intermediate host of Schistosoma mansoni on St. Lucia, West Indies. Ann Trop Med Parasitol 66:385–390

    CAS  PubMed  Google Scholar 

  • Sullivan CM (1954) Temperature reception and responses in fish. J Fish Res Board Can 11:153–170

    Google Scholar 

  • Thieltges DW, Rick J (2006) Effect of temperature on emergence, survival, and infectivity of cercariae of the marine trematode Renicola roscovita (Digenea: Renicolidae). Dis Aquat Organ 73:63–68

    PubMed  Google Scholar 

  • Thomas MB, Blanford S (2003) Thermal biology in insect-parasite interactions. Trends Ecol Evol 18:344–350

    Google Scholar 

  • Thomas F, Adamo S, Moore J (2005) Parasitic manipulation: where are we and where should we go? Behav Proc 68:185–199

    Google Scholar 

  • Torsten H (2005) Respiration rate in Bithynia tentaculata (L.) (Gastropoda: Bithynidae) in response to acclimation and acute temperature change. J Moll Stud 71:127–131

    Google Scholar 

  • Valtonen ET, Gibson DI (1997) Aspects of the biology of diplostomid metacercarial (Digenea) populations occurring in fishes in different localities of northern Finland. Ann Zool Fennici 34:47–59

    Google Scholar 

  • Vaughn LK, Brenheim H, Kluger MJ (1974) Fever in the lizard Dipsosaurus dorsalis. Nature 252:473–474

    CAS  PubMed  Google Scholar 

  • Watson DW, Mullens BZ, Petersen JJ (1993) Behavioral fever response of Musca domestica (Diptera: Muscidae) to infection by Entomophthora muscae (Zygomycetes: Entomophthorales). J Invert Pathol 61:10–16

    Google Scholar 

  • Żbikowska E (2004) Does behavioral fever occur in snails parasitized with trematode larvae? J Thermal Biol 29:675–679

    Google Scholar 

  • Żbikowska E (2005) Do larvae of Trichobilharzia szidati and Echinostoma revolutum generate behavioral fever in Lymnaea stagnalis ? Parasitol Res 97:68–72

    PubMed  Google Scholar 

  • Żbikowska (2006) Interakcje w układzie żywiciel-pasożyt między błotniarkami Lymnaea stagnalis i przywrami z gatunków: Diplostomum pseudospathaceum, Echinoparyphium aconiatum, Plagiorchis elegens. Wydawnictwo UMK, Toruń, 134pp

    Google Scholar 

  • Żbikowska E (2011) One snail-three Digenea species, different strategies in host-parasite interaction. Anim Biol 61:1–19

    Google Scholar 

  • Żbikowska E, Cichy A (2012) Symptoms of behavioural anapyrexia-reverse fever as a defence response of snails to fluke invasion. J Invertebr Pathol 109:269–273

    PubMed  Google Scholar 

  • Żbikowska E, Nowak A (2009) One hundred years of research on the natural infection of freshwater snails by trematode larvae in Europe. Parasitol Res 105:301–311

    PubMed  Google Scholar 

  • Żbikowska E, Żbikowski J (2015) Digenean larvae—the cause and beneficiaries of the changes in host snails’ thermal behavior. Parasitol Res. doi:10.1007/s00436-014-4276-z

    PubMed Central  PubMed  Google Scholar 

  • Żbikowska E, Wrotek S, Cichy A, Kozak W (2013a) Thermal preferences of wintering snails Planorbarius corneus (L.) exposed to lipopolysaccharide and zymosan. J Invertebr Pathol 112:57–61

    PubMed  Google Scholar 

  • Żbikowska E, Cichy A, Papierkiewicz D (2013b) Viral pyrogen affects thermoregulatory behavior of wintering Planorbarius corneus (L.) snails (Mollusca: Gastropoda). J Therm Biol 38:543–547

    Google Scholar 

  • Żbikowska E, Kletkiewicz H, Walczak M, Burkowska A (2014) Coexistence of Legionella pneumophila bacteria and free-living amoebae in lakes serving as a cooling system of a power plant. Water Air Soil Poll 225:2066. doi:10.1007/s11270-014-2066-y

    Google Scholar 

  • Żbikowski J, Żbikowska E (2009) Invaders of an invader-trematodes in Potamopyrgus antipodarum in Poland. J Invertebr Pathol 101:67–70

    PubMed  Google Scholar 

  • Żdarska Z (1964) Contribution to the development and species independence of Notocotylus ephemera (Nitzsch, 1807) (syn. N. thienemanni Szidat L et Szidat Y, 1933) Cs. Parasitology 11:309–318

    Google Scholar 

  • Żippay ML, Place SP, Hofman GE (2004) The molecular chaperone Hsc70 from eurythermal marine goby exhibits temperature sensitivity during luciferase refolding assays. Comp Biochem Physiol A 138:1–7

    Google Scholar 

  • Żuo W, Moses ME, West GB, Hou C, Brown JH (2012) A general model for effects of temperature on ectotherm ontogenetic growth and development. Proc Biol Sci 279:1840–1846

    PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elżbieta Żbikowska .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Żbikowska, E., Cichy, A. (2015). Can Parasites Change Thermal Preferences of Hosts?. In: Mehlhorn, H. (eds) Host Manipulations by Parasites and Viruses. Parasitology Research Monographs, vol 7. Springer, Cham. https://doi.org/10.1007/978-3-319-22936-2_5

Download citation

Publish with us

Policies and ethics