Skip to main content

Silicon Potentiates Host Defense Mechanisms Against Infection by Plant Pathogens

  • Chapter
Silicon and Plant Diseases

Abstract

Several agronomic and horticultural crops, such as barley, cucumbers, oats, rice, sugarcane, and wheat, benefit from applications of silicon. Growth enhancements results, in part, from reductions in the intensities of plant diseases. For the rice-Pyricularia oryzae model pathosystem, the mechanical barrier formed from silicon polymerization below the cuticle and in the cell walls was the first proposed hypothesis to explain how this element reduced the number of blast lesions and the lesion sizes. However, new insights have revealed that silicon's effect on plant resistance to a number of diseases may also occur through mediated host plant resistance mechanisms against pathogen infection. Plants supplied with silicon exhibit potentiated activation of the phenylpropanoid pathway resulting in increases in total soluble phenolics and lignin. The activities of defense enzymes, such as chitinases and β-1,3-glucanases, are maintained at higher levels during infection and the transcription of defense related genes occur faster and with greater output. When plants are supplied with silicon and then challenged with a pathogen, there is an enhanced activation in antioxidant metabolism, which in turn, suppresses the damaging cytotoxic effect of the reactive oxygen species that causes lipid peroxidation in the cell membrane. At the physiological level, leaf gas exchange parameters of silicon-treated plants are higher upon pathogen infection for crops, such as common beans, rice, sorghum and wheat, indicating the ameliorating effect of this element on photosynthesis. Although our understanding of how silicon affects plants in response to infection has advanced, the exact mechanism(s) by which silicon modulates plant physiology through the potentiation of host defense mechanisms still requires further investigation at the genomics, proteomics, and metabolomics levels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abed-Ashtiani F, Kadir JB, Selamat AB et al (2012) Effect of foliar and root application of silicon against rice blast fungus in MR219 rice variety. Plant Pathol J 28:164–171. doi:10.5423/PPJ.2012.28.2.164

    Article  CAS  Google Scholar 

  • Andrade CCL, Resende RS, Rodrigues FA et al (2013) Silicon reduces bacterial speck development on tomato leaves. Trop Plant Pathol 38:436–442. doi:10.1590/S1982-56762013005000021

    Article  Google Scholar 

  • Aucique-Perez CEA, Rodrigues FA, Moreira WR, DaMatta FM et al (2014) Leaf gas exchange and chlorophyll a fluorescence in wheat plants supplied with silicon and infected with Pyricularia oryzae. Phytopathology 104:143–149. doi:10.1094/PHYTO-06-13-0163-R

    Article  CAS  Google Scholar 

  • Baker NR (2008) Chlorophyll fluorescence: a probe of photosynthesis in vivo. Annu Rev Plant Biol 59:89–113. doi:10.1146/annurev.arplant.59.032607.092759

    Article  CAS  PubMed  Google Scholar 

  • Bélanger RR, Benhamou N, Menzies JG (2003) Cytological evidence of an active role of silicon in wheat resistance to powdery mildew (Blumeria graminis f. sp. tritici). Phytopathology 93:402–412. doi:10.1094/PHYTO.2003.93.4.402

    Article  PubMed  Google Scholar 

  • Berger S, Papadopoulos M, Schreiber U et al (2004) Complex regulation of gene expression, photosynthesis and sugar levels by pathogen infection in tomato. Physiol Plant 122:419–428. doi:10.1111/j.1399-3054.2004.00433.x

    Article  CAS  Google Scholar 

  • Berger S, Sinha AK, Roitsch T (2007) Plant physiology meets phytopathology: plant primary metabolism and plant-pathogen interactions. J Exp Bot 58:4019–4026. doi:10.1093/jxb/erm298

    Article  CAS  PubMed  Google Scholar 

  • Bilgin DD, Zavala JA, Zhu J et al (2010) Biotic stress globally downregulates photosynthesis genes. Plant Cell Environ 33:1597–1613. doi:10.1111/j.1365-3040.2010.02167.x

    Article  CAS  PubMed  Google Scholar 

  • Brunings AM, Datnoff LE, Ma JF et al (2009) Differential gene expression of rice in response to silicon and rice blast fungus Magnaporthe oryzae. Ann Appl Biol 155:161–170. doi:10.1111/j.1744-7348.2009.00347.x

    Article  CAS  Google Scholar 

  • Cacique IS, Domiciano GP, Moreira WR et al (2013) Effect of root and leaf applications of soluble silicon on blast development in rice. Bragantia 72:304–309. doi:10.1590/brag.2013.032

    Article  CAS  Google Scholar 

  • Cai K, Gao D, Luo S et al (2008) Physiological and cytological mechanisms of silicon‐induced resistance in rice against blast disease. Physiol Plant 134:324–333. doi:10.1111/j.1399-3054.2008.01140.x

    Article  CAS  PubMed  Google Scholar 

  • Carré-Missio V, Rodrigues FA, Schurt DA et al (2009) Ineficiência do silício no controle da ferrugem do cafeeiro em solução nutritiva. Trop Plant Pathol 34:416–421. doi:10.1590/s1982-56762009000600009

    Article  Google Scholar 

  • Carver TLW, Zeyen RJ, Ahlstrand GG (1987) The relationship between insoluble silicon and success or failure of attempted primary penetration by powdery mildew (Erysiphe graminis) germlings on barley. Physiol Mol Plant Pathol 31:133–148. doi:10.1016/0885-5765(87)90012-9

    Article  Google Scholar 

  • Carver TLW, Robbins MP, Thomas BJ et al (1998) Silicon deprivation enhances local autofluorescent responses and phenylalanine ammonia lyase activity in oat attacked by Blumeria graminis. Physiol Mol Plant Pathol 52:245–257. doi:10.1006/pmpp.1998.0149

    Article  CAS  Google Scholar 

  • Chain F, Côté-Beaulieu C, Belzile F et al (2009) A comprehensive transcriptomic analysis of the effect of silicon on wheat plants under control and pathogen stress conditions. Mol Plant Microbe Interact 22:1323–1330. doi:10.1094/MPMI-22-11-1323

    Article  CAS  PubMed  Google Scholar 

  • Chérif M, Benhamou N, Menzies JG et al (1992a) Silicon induced resistance in cucumber plants against Pythium ultimum. Physiol Mol Plant Pathol 41:411–425. doi:10.1016/0885-5765(92)90053-X

    Article  Google Scholar 

  • Chérif M, Menzies JG, Benhamou N, Bélanger RR et al (1992b) Studies of silicon distribution in wounded and Pythium ultimum infected cucumber plants. Physiol Mol Plant Pathol 41:371–385. doi:10.1016/0885-5765(92)90022-N

    Article  Google Scholar 

  • Chérif M, Asselin A, Bélanger RR (1994) Defense responses induced by soluble silicon in cucumber roots infected by Pythium spp. Phytopathology 84:236–242. doi:10.1094/Phyto-84-236

    Article  Google Scholar 

  • Conrath U (2011) Molecular aspects of defence priming. Trends Plant Sci 16:524–531. doi:10.1016/j.tplants.2011.06.004

    Article  CAS  PubMed  Google Scholar 

  • Cruz MFA, Rodrigues FA, Polanco LR et al (2013) Inducers of resistance and silicon on the activity of defense enzymes in the soybean-Phakopsora pachyrhizi interaction. Bragantia 72:162–172. doi:10.1016/1369-5266(88)80053-0

    Article  Google Scholar 

  • Curvelo CRS, Rodrigues FA, Pereira LF et al (2013a) Trocas gasosas e estresse oxidativo em plantas de algodoeiro supridas com silício e infectadas por Ramularia areola. Bragantia 72:346–359. doi:10.1590/brag.2013.053

    Article  CAS  Google Scholar 

  • Curvelo CRS, Rodrigues FA, Silva LC et al (2013b) Mecanismos bioquímicos da defesa do algodoeiro à mancha de ramularia mediados pelo silício. Bragantia 72:41–51

    Article  Google Scholar 

  • Da Silva WL, Cruz MFA, Fortunato AA, Rodrigues FA (2015) Histochemical aspects of wheat resistance to leaf blast mediated by silicon. Sci Agric 72(4):322–327

    Article  Google Scholar 

  • Dallagnol LJ, Rodrigues FA, DaMatta FM et al (2011) Deficiency in silicon uptake affects cytological, physiological, and biochemical events in the rice-Bipolaris oryzae interaction. Phytopathology 101:92–104. doi:10.1094/PHYTO-04-10-0105

    Article  PubMed  Google Scholar 

  • Dallagnol LJ, Rodrigues FA, Chaves ARM, DaMatta FM (2013) Photosynthesis and sugar concentration are impaired by the defective active silicon uptake in rice plants infected with Bipolaris oryzae. Plant Pathol 62:120–129. doi:10.1111/j.1365-3059.2012.02606.x

    Article  CAS  Google Scholar 

  • Dallagnol LJ, Rodrigues FA, Pascholati SF et al (2015) Comparison of root versus foliar applied potassium silicate in potentiating postinfection defences of melon against powdery mildew. Plant Pathol. doi:10.1094/PHYTO.2003.93.4.402

  • Dann EK, Muir S (2002) Peas grown in media with elevated plant-available silicon levels have higher activities of chitinase and β-1,3-glucanase, are less susceptible to a fungal leaf spot pathogen and accumulate more foliar silicon. Australas Plant Pathol 31:9–13

    Article  Google Scholar 

  • Datnoff LE, Rodrigues FA (2005) The role of silicon in suppressing rice diseases. APSnet Features. doi:10.1094/APSnetFeature-2005-0205

    Google Scholar 

  • Debona D, Rodrigues FA, Rios JA et al (2014) The effect of silicon on antioxidant metabolism of wheat leaves infected by Pyricularia oryzae. Plant Pathol 63:581–589. doi:10.1111/ppa.12119

    Article  CAS  Google Scholar 

  • Domiciano GP, Rodrigues FA, Guerra AMN et al (2013) Infection process of Bipolaris sorokiniana on wheat leaves is affected by silicon. Trop Plant Pathol 38:258–263. doi:10.1590/S1982-56762013005000006

    Article  Google Scholar 

  • Domiciano GP, Cacique IS, Freitas CC et al (2015) Alterations in gas exchange and oxidative metabolism in rice leaves infected by Pyricularia oryzae are attenuated by silicon. Phytopathology 105:738–747. doi:10.1094/PHYTO-10-14-0280-R

    Article  CAS  PubMed  Google Scholar 

  • Ehness R, Ecker M, Godt DE et al (1997) Glucose and stress independently regulate source and sink metabolism and defense mechanisms via signal transduction pathways involving protein phosphorylation. The Plant Cell Online 9:1825–1841. doi:10.1105/tpc.9.10.1825

    Article  CAS  Google Scholar 

  • Fauteux F, Rémus-Borel W, Menzies JG et al (2005) Silicon and plant disease resistance against pathogenic fungi. FEMS Microb Lett 249:1–6. doi:10.1016/j.femsle.2005.06.034

    Article  CAS  Google Scholar 

  • Fauteux F, Chain F, Belzile F et al (2006) The protective role of silicon in the Arabidopsis–powdery mildew pathosystem. Proc Natl Acad Sci U S A 103:17554–17559. doi:10.1073/pnas.0606330103

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fawe A, Abou-Zaid M, Menzies JG, Bélanger RR et al (1998) Silicon-mediated accumulation of flavonoid phytoalexins in cucumber. Phytopathology 88:396–401. doi:10.1094/PHYTO.1998.88.5.396

    Article  CAS  PubMed  Google Scholar 

  • Fortunato AA, Rodrigues FA, Nascimento KJT (2012) Physiological and biochemical aspects of the resistance of banana plants to Fusarium wilt potentiated by silicon. Phytopathology 102:957–966. doi:10.1094/PHYTO-02-12-0037-R

    Article  CAS  PubMed  Google Scholar 

  • Fortunato AA, da Silva WL, Rodrigues FA (2014) Phenylpropanoid pathway is potentiated by silicon in the roots of banana plants during the infection process of Fusarium oxysporum f. sp. cubense. Phytopathology 104:597–603. doi:10.1094/PHYTO-07-13-0203-R

    Article  CAS  PubMed  Google Scholar 

  • Freeman BC, Beattie GA (2008) An overview of plant defenses against pathogens and herbivores. Plant Health Instruc. doi:10.1094/PHI-I-2008-0226-01

  • Gao D, Cai K, Chen J et al (2011) Silicon enhances photochemical efficiency and adjusts mineral nutrient absorption in Magnaporthe oryzae infected rice plants. Acta Physiol Plant 33:675–682. doi:10.1007/s11738-010-0588-5

    Article  CAS  Google Scholar 

  • Ghareeb H, Bozsó Z, Ott PG et al (2011) Transcriptome of silicon-induced resistance against Ralstonia solanacearum in the silicon non-accumulator tomato implicates priming effect. Physiol Mol Plant Pathol 75:83–89. doi:10.1016/j.pmpp.2010.11.004

    Article  CAS  Google Scholar 

  • Guerra AMNM, Rodrigues FA, Berger PG et al (2013a) Aspectos bioquímicos da resistência do algodoeiro à ramulose potencializada pelo silício. Bragantia 72:292–303. doi:10.1590/brag.2013.036

    Article  CAS  Google Scholar 

  • Guerra AMNM, Rodrigues FA, Berger PG et al (2013b) Resistência do algodoeiro à ferrugem tropical potencializada pelo silício. Bragantia 72:279–291. doi:10.1590/brag.2013.037

    Article  CAS  Google Scholar 

  • Hashioka Y (1942) Studies on rice blast disease in the tropics. (I) Anatomical comparison of leaf epidermis of Formosan rice with that of Taiwan rice from plant pathological viewpoints. Agric Hortic 17:846–852

    Google Scholar 

  • Hayasaka T, Fujii H, Ishiguro K (2008) The role of silicon in preventing appressorial penetration by the rice blast fungus. Phytopathology 98:1038–1044. doi:10.1094/PHYTO-98-9-1038

    Article  CAS  PubMed  Google Scholar 

  • He C, Ma J, Wang L (2015) A hemicellulose-bound form of silicon with potential to improve the mechanical properties and regeneration of the cell wall of rice. New Phytol 206:1051–1062

    Article  CAS  PubMed  Google Scholar 

  • Heath MC (1981) Insoluble silicon in necrotic cowpea cells following infection with an incompatible isolate of the cowpea rust fungus. Physiol Plant Pathol 19:273–276

    Article  CAS  Google Scholar 

  • Heath MC, Stumpf MA (1986) Ultrastructural observations of penetration sites of the cowpea rust fungus in untreated and silicon-depleted French bean cells. Physiol Mol Plant Pathol 29:27–39

    Article  Google Scholar 

  • Hemmi T, Abe T, Inoue Y (1941) Studies on the rice blast disease: relation of the environment to the development of blast disease and races of the blast fungus. Noji Kairyo Shiryo 157:1–232

    Google Scholar 

  • Inanaga S, Okasaka A, Tanaka S (1995a) Calcium and silicon binding compounds in cell walls of rice shoots. Jpn J Soil Sci Plant Nutr 41:103–110

    Article  CAS  Google Scholar 

  • Inanaga S, Okasaka A, Tanaka S (1995b) Does silicon exist in association with organic compounds in rice plant? Jpn J Soil Sci Plant Nutr 11:111–117

    Article  Google Scholar 

  • Ishiguro K (2001) Review of research in Japan on the roles of silicon in conferring resistance against rice blast. In: Datnoff LE, Snyder GH, Korndörfer GH (eds) Silicon in agriculture, studies in Plant Science 8. Elsevier Science, Amsterdam, pp 277–291

    Chapter  Google Scholar 

  • Ito S, Hayashi H (1931) On the relation of silica supply to rice blast. J Sapporo Soc Agric Sci 103:460–461

    Google Scholar 

  • Ito S, Sakamoto M (1939) Studies on rice blast. Hokkaido University, Hokkaido

    Google Scholar 

  • Jiang D (1993) The role of silicon in barley resistance to powdery mildew (Erysiphe graminis f. sp. hordei). PhD thesis, University of Minnesota, St. Paul

    Google Scholar 

  • Kauss H, Seehaus K, Franke R, Gilbert S et al (2003) Silica deposition by a strongly cationic proline-rich protein from systemically resistant cucumber plants. Plant J 33:87–95. doi:10.1046/j.1365-313X.2003.01606.x

    Article  CAS  PubMed  Google Scholar 

  • Kawamura E, Ono K (1948) Study on the relation between the pre-infection behavior of rice blast fungus, Piricularia oryzae, and water droplets on rice plant leaves. J Natl Agr Expt Sta 4:1–12

    Google Scholar 

  • Kim SG, Kim KW, Park EW et al (2002) Silicon-induced cell wall fortification of rice leaves: a possible cellular mechanism of enhanced host resistance to blast. Phytopathology 92:1095–1103. doi:10.1094/PHYTO.2002.92.10.1095

    Article  PubMed  Google Scholar 

  • Koga H, Zeyen RJ, Bushnell WR et al (1988) Hypersensitive cell death, autofluorescence, and insoluble silicon accumulation in barley leaf epidermal cells under attack by Erysiphe graminis f. sp. hordei. Physiol Mol Plant Pathol 32:395–409

    Article  Google Scholar 

  • Lamb C, Dixon RA (1997) The oxidative burst in plant disease resistance. Annu Rev Plant Biol 48:251–275. doi:10.1146/annurev.arplant.48.1.251

    Article  CAS  Google Scholar 

  • Less H, Angelovici R, Tzin V et al (2011) Coordinated gene networks regulating Arabidopsis plant metabolism in response to various stresses and nutritional cues. Plant Cell 23:1264–1271. doi:10.1105/tpc.110.082867

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Li A, Heath MC (1990) Effect of plant growth regulators on the interactions between bean plants and rust fungi non-pathogenic on beans. Physiol Mol Plant Pathol 37:245–254

    Article  CAS  Google Scholar 

  • Li W, Bi Y, Ge Y et al (2012) Effects of postharvest sodium silicate treatment on pink rot disease and oxidative stress-antioxidative system in muskmelon fruit. Eur Food Res Technol 234:137–145. doi:10.1007/s00217-011-1611-9

    Article  CAS  Google Scholar 

  • Liang YC, Sun WC, Si J, Römheld V (2005) Effects of foliar‐and root‐applied silicon on the enhancement of induced resistance to powdery mildew in Cucumis sativus. Plant Pathol 54:678–685. doi:10.1111/j.1365-3059.2005.01246.x

    Article  CAS  Google Scholar 

  • Liu M, Cai K, Chen Y et al (2014) Proteomic analysis of silicon-mediated resistance to Magnaporthe oryzae in rice (Oryza sativa L.). Eur J Plant Pathol 139:579–592. doi:10.1007/s10658-014-0414-9

    Article  CAS  Google Scholar 

  • Ma JF, Yamaji N (2006) Silicon uptake and accumulation in higher plants. Trends Plant Sci 11:392–397. doi:10.1016/j.tplants.2006.06.007

    Article  CAS  PubMed  Google Scholar 

  • Maekawa K, Watanabe K, Kanto T et al (2002) Accumulation of silicon around penetration sites of Magnaporthe grisea and silicon-dependent promotion of superoxide generation after inoculation on rice leaf. In: Matoh T (ed) Second silicon in agriculture conference. Press-Net, Kyoto, pp 34–38

    Google Scholar 

  • Menzies JG, Ehret DL, Glass ADM, Samuels AL et al (1991) The influence of silicon on cytological interactions between Sphaerotheca fuliginea and Cucumis sativus. Physiol Mol Plant Pathol 39:403–414. doi:10.1016/0885-5765(91)90007-5

    Article  CAS  Google Scholar 

  • Mohaghegh P, Khoshgoftarmanesh AH, Shirvani M et al (2011) Effect of silicon nutrition on oxidative stress induced by Phytophthora melonis infection in cucumber. Plant Dis 95:455–460. doi:10.1094/PDIS-05-10-0379

    Article  CAS  Google Scholar 

  • Motomura H, Fujii T, Suzuki M (2004) Silica deposition in relation to ageing of leaf tissues in Sasa veitchii (Carrière) Rehder (Poaceae: Bambusoideae). Ann Bot 93:235–248. doi:10.1093/aob/mch034

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nascimento KJT, Debona D, França SKS et al (2014) Soybean resistance to Cercospora sojina infection is reduced by silicon. Phytopathology 104:1183–1191. doi:10.1094/PHYTO-02-14-0047-R

    Article  CAS  PubMed  Google Scholar 

  • Pereira SC, Rodrigues FA, Carré-Missio V et al (2009a) Aplicação foliar de silício na resistência da soja à ferrugem e na atividade de enzimas de defesa. Trop Plant Pathol 34:164–170. doi:10.1590/S1982-56762009000300005

    Google Scholar 

  • Pereira SC, Rodrigues FA, Carré-Missio V et al (2009b) Efeito da aplicação foliar de silício na resistência à ferrugem e na potencialização da atividade de enzimas de defesa em cafeeiro. Trop Plant Pathol 34:223–230. doi:10.1590/S1982-56762009000400004

    Article  Google Scholar 

  • Perumalla CJ, Heath MC (1991) The effect of inhibitors of various cellular processes on the wall modifications induced in bean leaves by the cowpea rust fungus. Physiol Mol Plant Pathol 38:293–300. doi:10.1016/S0885-5765(05)80120-1

    Article  CAS  Google Scholar 

  • Petit AN, Vaillant N, Boulay M et al (2006) Alteration of photosynthesis in grapevines affected by esca. Phytopathology 96:1060–1066. doi:10.1094/PHYTO-96-1060

    Article  CAS  PubMed  Google Scholar 

  • Polanco LR, Rodrigues FA, Nascimento KJT et al (2014) Photosynthetic gas exchange and antioxidative system in common bean plants infected by Colletotrichum lindemuthianum and supplied with silicon. Trop Plant Pathol 39:35–42. doi:10.1590/S1982-56762014000100005

    Article  Google Scholar 

  • Pozza AAA, Alvez E, Pozza EA et al (2004) Efeito do silício no controle da cercosporiose em três variedades de cafeeiro. Fitopatol Bras 29:185–188. doi:10.1590/S0100-41582004000200010

    Article  Google Scholar 

  • Rahman A, Wallis C, Uddin W (2015) Silicon induced systemic defense responses in perennial ryegrass against infection by Magnaporthe oryzae. Phytopathology 105:748–757. doi:10.1094/PHYTO-12-14-0378-R

    Article  CAS  PubMed  Google Scholar 

  • Rémus-Borel W, Menzies JG, Bélanger RR (2005) Silicon induces antifungal compounds in powdery mildew-infected wheat. Physiol Mol Plant Pathol 66:108–115. doi:10.1094/PDIS-04-11-0274

    Article  CAS  Google Scholar 

  • Rémus-Borel W, Menzies JG, Bélanger RR (2009) Aconitate and methyl aconitate are modulated by silicon in powdery mildew-infected wheat plants. J Plant Physiol 166:1413–1422. doi:10.1016/j.jplph.2009.02.011

    Article  PubMed  CAS  Google Scholar 

  • Resende RS, Rodrigues FA, Cavatte PC et al (2012) Leaf gas exchange and oxidative stress in sorghum plants supplied with silicon and infected by Colletotrichum sublineolum. Phytopathology 102:892–898. doi:10.1094/PHYTO-01-12-0014-R

    Article  CAS  PubMed  Google Scholar 

  • Resende RS, Rodrigues FA, Gomes RJ, Nascimento KJT et al (2013) Microscopic and biochemical aspects of sorghum resistance to anthracnose mediated by silicon. Ann Appl Biol 163:114–123. doi:10.1111/aab.12040

    Article  CAS  Google Scholar 

  • Rezende DC, Rodrigues FA, Carré-Missio V, Schurt DA, Kawamura K, Korndörfer GH (2009) Effect of root and foliar applications of silicon on brown spot development in rice. Australas Plant Pathol 38:67–73. doi:10.1071/ap08080

    Article  CAS  Google Scholar 

  • Rios JA, Rodrigues FA, Debona D et al (2014) Photosynthetic gas exchange in leaves of wheat plants supplied with silicon and infected with Pyricularia oryzae. Acta Physiol Plant 36:371–379. doi:10.1007/s11738-013-1418-3

    Article  CAS  Google Scholar 

  • Rodrigues FA, Benhamou N, Datnoff LE, Jones JB, Bélanger RR (2003) Ultrastructural and cytochemical aspects of silicon-mediated rice blast resistance. Phytopathology 93:535–546

    Article  CAS  PubMed  Google Scholar 

  • Rodrigues FA, McNally DJ, Datnoff LE et al (2004) Silicon enhances the accumulation of diterpenoid phytoalexins in rice: a potential mechanism for blast resistance. Phytopathology 94:177–183

    Article  CAS  PubMed  Google Scholar 

  • Rodrigues FA, Jurick WM, Datnoff LE et al (2005) Silicon influences cytological and molecular events in compatible and incompatible rice-Magnaporthe grisea interactions. Physiol Mol Plant Pathol 66:144–159

    Article  CAS  Google Scholar 

  • Rodrigues FA, Polanco LR, Duarte HSS et al (2015) Photosynthetic gas exchange in common bean submitted to foliar sprays of potassium silicate, sodium molybdate and fungicide and infected with Colletotrichum lindemuthianum. J Phytopathol 163:554–559. doi:10.1111/jph.12353

    Article  CAS  Google Scholar 

  • Rojas CM, Senthil-Kumar M, Tzin V, Kirankumar S et al (2014) Regulation of primary plant metabolism during plant-pathogen interactions and its contribution to plant defense. Front Plant Sci 5:17. doi:10.3389/fpls.2014.00017

    Article  PubMed Central  PubMed  Google Scholar 

  • Samuels AL, Glass ADM, Ehret DL et al (1991) Mobility and deposition of silicon in cucumber plants. Plant Cell Environ 41:485–492. doi:10.1111/j.1365-3040.1991.tb01518.x

    Article  Google Scholar 

  • Scholes JD, Rolfe SA (1996) Photosynthesis in localised regions of oat leaves infected with crown rust (Puccinia coronata): quantitative imaging of chlorophyll fluorescence. Planta 199:573–582

    Article  CAS  Google Scholar 

  • Schurt DA, Rodrigues FA, Reis RD et al (2012) Resistência física de bainhas de plantas de arroz supridas com silício e infectadas por Rhizoctonia solani. Trop Plant Pathol 37:281–285. doi:10.1590/S1982-56762012000400008

    Article  Google Scholar 

  • Schurt DA, Rodrigues FA, Carré-Missio V et al (2013a) Silício alterando compostos derivados da pirólise de bainhas foliares de plantas de arroz infectadas por Rhizoctonia solani. Bragantia 72:52–60

    Article  CAS  Google Scholar 

  • Schurt DA, Rodrigues FA, Colodette JL et al (2013b) Efeito do silício nas concentrações de lignina e de açúcares em bainhas de folhas de arroz infectadas por Rhizoctonia solani. Bragantia 72:360–366

    Article  CAS  Google Scholar 

  • Schurt DA, Cruz MF, Nascimento KJT et al (2014) Silicon potentiates the activities of defense enzymes in the leaf sheaths of rice plants infected by Rhizoctonia solani. Trop Plant Pathol 39:457–463. doi:10.1590/S1982-56762014000600007

    Article  Google Scholar 

  • Schurt DA, Reis RD, Araujo L, Carré-Missio V, Rodrigues FA (2015) Análise microscópica da resistência do arroz à queima das bainhas mediada pelo silício. Bragantia 74:93–101, doi: http://dx.doi.org/10.1590/1678-4499.0355

    Article  Google Scholar 

  • Seebold KW, Kucharek TA, Datnoff LE et al (2001) The influence of silicon on components of resistance to blast in susceptible, partially resistant, and resistant cultivars of rice. Phytopathology 91:63–69. doi:10.1094/PHYTO.2001.91.1.63

    Article  CAS  PubMed  Google Scholar 

  • Shetty R, Fretté X, Jensen B et al (2011) Silicon-induced changes in antifungal phenolic acids, flavonoids, and key phenylpropanoid pathway genes during the interaction between miniature roses and the biotrophic pathogen Podosphaera pannosa. Plant Physiol 157:2194–2205. doi:10.1104/pp.111.185215

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Shetty R, Jensen B, Shetty NP et al (2012) Silicon induced resistance against powdery mildew of roses caused by Podospahera pannosa. Plant Pathol 61:120–131. doi:10.1111/j.1365-3059.2011.02493.x

    Article  CAS  Google Scholar 

  • Shtienberg D (1992) Effects of foliar diseases on gas exchange processes: a comparative study. Phytopathology 82:760–765. doi:10.1094/Phyto-82-760

    Article  Google Scholar 

  • Silva RV, Oliveira RDL, Nascimento KJT, Rodrigues FA et al (2010) Biochemical responses of coffee resistance against Meloidogyne exigua mediated by silicon. Plant Pathol 59:586–593. doi:10.1111/j.1365-3059.2009.02228.x

    Article  CAS  Google Scholar 

  • Silva MRJ, Pereira SC, Rodrigues FA, Zanão Júnior KA et al (2012) Silicon and manganese on the activity of enzymes involved in rice resistance against brown spot. Trop Plant Pathol 37:339–345. doi:10.1590/S1982-56762012000500006

    Article  Google Scholar 

  • Sousa RS, Rodrigues FA, Schurt DA, Souza NFA, Cruz MFA (2013) Cytological aspects of the infection process of Pyricularia oryzae on leaves of wheat plants supplied with silicon. Trop Plant Pathol 38:472–477. doi:10.1590/S1982-56762013000600002

    Article  Google Scholar 

  • Sun W, Zhang J, Fan Q et al (2010) Silicon-enhanced resistance to rice blast is attributed to silicon-mediated defence resistance and its role as physical barrier. Eur J Plant Pathol 128:39–49. doi:10.1007/s10658-010-9625-x

    Article  CAS  Google Scholar 

  • Suzuki H (1940) On the relationship between rice susceptibility and penetration into host plants. Ngyo Oyobi Engei 10:1999–2010

    Google Scholar 

  • Swarbrick PJ, Schulze‐Lefert P, Scholes JD (2006) Metabolic consequences of susceptibility and resistance (race‐specific and broad‐spectrum) in barley leaves challenged with powdery mildew. Plant Cell Environ 29:1061–1076

    Article  CAS  PubMed  Google Scholar 

  • Tatagiba SD, Rodrigues FA, Filippi MCC et al (2014) Physiological responses of rice plants supplied with silicon to Monographella albescens infection. J Phytopathol 162:596–606. doi:10.1111/jph.12231

    Article  CAS  Google Scholar 

  • Torres MA, Jones JDG, Dangl JL (2006) Reactive oxygen species signaling in response to pathogens. Plant Physiol 141:373–378. doi:10.1104/pp.106.079467

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Van Bockhaven J, De Vleesschauwer D, Höfte M (2013) Towards establishing broad-spectrum disease resistance in plants: silicon leads the way. J Exp Bot 64:1281–1293. doi:10.1093/jxb/ers329

    Article  PubMed  CAS  Google Scholar 

  • Van Bockhaven J, Spíchal L, Novák O et al (2015) Silicon induces resistance to the brown spot fungus Cochliobolus miyabeanus by preventing the pathogen from hijacking the rice ethylene pathway. New Phytol 206:761–773

    Article  PubMed  CAS  Google Scholar 

  • Van Hulten M, Pelser M, Van Loon LC et al (2006) Costs and benefits of priming for defense in Arabidopsis. Proc Natl Acad Sci U S A 103:5602–5607

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Vivancos J, Labbé C, Menzies JG, Bélanger RR et al (2015) Silicon‐mediated resistance of Arabidopsis against powdery mildew involves mechanisms other than the salicylic acid (SA)‐dependent defence pathway. Mol Plant Pathol 16:572–582. doi:10.1111/mpp.12213

    Article  CAS  PubMed  Google Scholar 

  • Volk RJ, Kahn RP, Weintraub RL (1958) Silicon content of the rice plant as a factor influencing its resistance to infection by the blast fungus, Piricularia oryzae. Phytopathology 48:179–184. doi:10.1590/S0100-41582005000500001

    CAS  Google Scholar 

  • Yoshida S, Ohnishi Y, Kitagishi K (1962) Chemical forms, mobility, and deposition of silicon in the rice plant. Jpn JSoil Sci Plant Nutr 8:107–111

    CAS  Google Scholar 

  • Zeyen RJ, Ahlstrand GG, Carver TLW (1993) X-ray microanalysis of frozen-hydrated, freeze-dried, and critical point dried leaf specimens: determination of soluble and insoluble chemical elements at Erysiphe graminis epidermal cell papilla sites in barley isolines containing Ml-o and ml-o alleles. Can J Bot 71:284–296

    Article  CAS  Google Scholar 

  • Zhao D, Glynn NC, Glaz B et al (2011) Orange rust effects on leaf photosynthesis and related characters of sugarcane. Plant Dis 95:640–647. doi:10.1094/PDIS-10-10-0762

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabrício A. Rodrigues .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

A. Rodrigues, F., Resende, R.S., Dallagnol, L.J., E. Datnoff, L. (2015). Silicon Potentiates Host Defense Mechanisms Against Infection by Plant Pathogens. In: Rodrigues, F., Datnoff, L. (eds) Silicon and Plant Diseases. Springer, Cham. https://doi.org/10.1007/978-3-319-22930-0_5

Download citation

Publish with us

Policies and ethics