Skip to main content

Epigenetic Biomarkers of Breast Cancer Risk: Across the Breast Cancer Prevention Continuum

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((BCRF,volume 882))

Abstract

Epigenetic biomarkers, such as DNA methylation, can increase cancer risk through altering gene expression. The Cancer Genome Atlas (TCGA) Network has demonstrated breast cancer-specific DNA methylation signatures. DNA methylation signatures measured at the time of diagnosis may prove important for treatment options and in predicting disease-free and overall survival (tertiary prevention). DNA methylation measurement in cell free DNA may also be useful in improving early detection by measuring tumor DNA released into the blood (secondary prevention). Most evidence evaluating the use of DNA methylation markers in tertiary and secondary prevention efforts for breast cancer comes from studies that are cross-sectional or retrospective with limited corresponding epidemiologic data, raising concerns about temporality. Few prospective studies exist that are large enough to address whether DNA methylation markers add to the prediction of tertiary and secondary outcomes over and beyond standard clinical measures. Determining the role of epigenetic biomarkers in primary prevention can help in identifying modifiable pathways for targeting interventions and reducing disease incidence. The potential is great for DNA methylation markers to improve cancer outcomes across the prevention continuum. Large, prospective epidemiological studies will provide essential evidence of the overall utility of adding these markers to primary prevention efforts, screening, and clinical care.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Siegel R, Ma J, Zou Z, Jemal A (2014) Cancer statistics, 2014. CA Cancer J Clin 64(1):9–29. doi:10.3322/caac.21208

    Article  PubMed  Google Scholar 

  2. Johnson RH, Chien FL, Bleyer A (2013) Incidence of breast cancer with distant involvement among women in the United States, 1976 to 2009. J Am Med Assoc 309(8):800–805. doi:10.1001/jama.2013.776

    Article  CAS  Google Scholar 

  3. Murphy M (2010) Mammography screening for breast cancer. J Am Med Assoc 303:166–167

    Article  CAS  Google Scholar 

  4. Hudis CA (2007) Trastuzumab—mechanism of action and use in clinical practice. N Engl J Med 357(1):39–51. doi:10.1056/NEJMra043186

    Article  CAS  PubMed  Google Scholar 

  5. Shantakumar S, Terry MB, Paykin A, Teitelbaum SL, Britton JA, Moorman PG, Kritchevsky SB, Neugut AI, Gammon MD (2007) Age and menopausal effects of hormonal birth control and hormone replacement therapy in relation to breast cancer risk. Am J Epidemiol 165(10):1187–1198. doi:kwm006 [pii] 10.1093/aje/kwm006

    Article  PubMed  Google Scholar 

  6. Quante A, Whittemore A, Shriver T, Strauch K, Terry M (2012) Breast cancer risk assessment across the risk continuum: genetic and nongenetic risk factors contributing to differential model performance. Breast Cancer Res 14(6):R144

    Article  PubMed  PubMed Central  Google Scholar 

  7. Hammond ME, Hayes DF, Dowsett M, Allred DC, Hagerty KL, Badve S, Fitzgibbons PL, Francis G, Goldstein NS, Hayes M, Hicks DG, Lester S, Love R, Mangu PB, McShane L, Miller K, Osborne CK, Paik S, Perlmutter J, Rhodes A, Sasano H, Schwartz JN, Sweep FC, Taube S, Torlakovic EE, Valenstein P, Viale G, Visscher D, Wheeler T, Williams RB, Wittliff JL, Wolff AC (2010) American Society of Clinical Oncology/College of American Pathologists guideline recommendations for immunohistochemical testing of estrogen and progesterone receptors in breast cancer. J Clin Oncol: Off J Am Soc Clin Oncol 28(16):2784–2795. doi:10.1200/JCO.2009.25.6529

    Article  Google Scholar 

  8. Feinberg AP (2004) The epigenetics of cancer etiology. Semin Cancer Biol 14(6):427–432. doi:S1044579X04000483 [pii] 10.1016/j.semcancer.2004.06.005 [doi]

    Article  CAS  PubMed  Google Scholar 

  9. Jones PA, Baylin SB (2002) The fundamental role of epigenetic events in cancer. Nat Rev Genet 3(6):415–428

    CAS  PubMed  Google Scholar 

  10. Feinberg AP, Vogelstein B (1983) Hypomethylation distinguishes genes of some human cancers from their normal counterparts. Nature 301(5895):89–92

    Article  CAS  PubMed  Google Scholar 

  11. Tycko B (2003) Genetic and epigenetic mosaicism in cancer precursor tissues. Ann New York Acad Sci 983(1):43–54. doi:10.1111/j.1749–6632.2003.tb05961.x

    Article  CAS  Google Scholar 

  12. Ehrlich M (2002) DNA methylation in cancer: too much, but also too little. Oncogene 21(35):5400–5413. doi:10.1038/sj.onc.1205651 [doi]

    Article  CAS  PubMed  Google Scholar 

  13. van Hoesel AQ, Sato Y, Elashoff DA, Turner RR, Giuliano AE, Shamonki JM, Kuppen PJK, van de Velde CJH, Hoon DSB (2013) Assessment of DNA methylation status in early stages of breast cancer development. Br J Cancer 108(10):2033–2038. doi:10.1038/bjc.2013.136

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Hoque MO, Feng Q, Toure P, Dem A, Critchlow CW, Hawes SE, Wood T, Jeronimo C, Rosenbaum E, Stern J, Yu M, Trink B, Kiviat NB, Sidransky D (2006) Detection of aberrant methylation of four genes in plasma DNA for the detection of breast cancer. J Clin Oncol 24(26):4262–4269. doi:10.1200/jco.2005.01.3516

    Article  CAS  PubMed  Google Scholar 

  15. Radpour R, Barekati Z, Kohler C, Lv Q, Bürki N, Diesch C, Bitzer J, Zheng H, Schmid S, Zhong XY (2011) Hypermethylation of tumor suppressor genes involved in critical regulatory pathways for developing a blood-based test in breast cancer. PLoS One 6(1):e16080. doi:10.1371/journal.pone.0016080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Fabian CJ, Kimler BF, Mayo MS, Khan SA (2005) Breast-tissue sampling for risk assessment and prevention. Endocrine-Related Cancer 12(2):185–213. doi:10.1677/erc.1.01000

    Article  CAS  PubMed  Google Scholar 

  17. Wong EM, Southey MC, Fox SB, Brown MA, Dowty JG, Jenkins MA, Giles GG, Hopper JL, Dobrovic A (2011) Constitutional methylation of the BRCA1 promoter is specifically associated with BRCA1 mutation-associated pathology in early-onset breast cancer. Cancer Prev Res 4(1):23–33. doi:10.1158/1940–6207.capr-10-0212

    Article  CAS  Google Scholar 

  18. Yan PS, Venkataramu C, Ibrahim A, Liu JC, Shen RZ, Diaz NM, Centeno B, Weber F, Leu Y-W, Shapiro CL, Eng C, Yeatman TJ, Huang TH-M (2006) Mapping geographic zones of cancer risk with epigenetic biomarkers in normal breast tissue. Clin Cancer Res 12(22):6626–6636. doi:10.1158/1078-0432.ccr-06-0467

    Article  CAS  PubMed  Google Scholar 

  19. Ma Y, Wang X, Jin H (2013) Methylated DNA and microRNA in body fluids as biomarkers for cancer detection. Int J Mol Sci 14(5):10307–10331

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Widschwendter M, Jones P (2002) DNA methylation and breast carcinogenesis. Oncogene 21:5462–5482

    Article  CAS  PubMed  Google Scholar 

  21. Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100(1):57–70. doi:http://dx.doi.org/10.1016/S0092-8674(00)81683-9

    Article  CAS  PubMed  Google Scholar 

  22. Robertson KD (2005) DNA methylation and human disease. Nat Rev Genet 6(8):597–610. doi:http://www.nature.com/nrg/journal/v6/n8/suppinfo/nrg1655_S1.html

    Article  CAS  PubMed  Google Scholar 

  23. Kohli RM, Zhang Y (2013) TET enzymes, TDG and the dynamics of DNA demethylation. Nature 502(7472):472–479. doi:10.1038/nature12750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Mensaert K, Denil S, Trooskens G, Van Criekinge W, Thas O, De Meyer T (2014) Next-generation technologies and data analytical approaches for epigenomics. Environ Mol Mutagen 55(3):155–170. doi:10.1002/em.21841

    Article  CAS  PubMed  Google Scholar 

  25. Fraga M, Esteller M (2002) DNA methylation: a profile of methods and applications. Biotechniques 33:632, 634, 636–649

    Google Scholar 

  26. Laird PW (2010) Principles and challenges of genome-wide DNA methylation analysis. Nat Rev Genet 11(3):191–203

    Article  CAS  PubMed  Google Scholar 

  27. Shen L, Waterland RA (2007) Methods of DNA methylation analysis. Curr Opin Clin Nutr Metab Care 10(5):576–581

    Article  CAS  PubMed  Google Scholar 

  28. Esteller M (2007) Cancer epigenomics: DNA methylomes and histone-modification maps. Nat Rev Genet 8(4):286–298

    Article  CAS  PubMed  Google Scholar 

  29. Quinlivan EP, Gregory I, Jesse F (2008) DNA methylation determination by liquid chromatography-tandem mass spectrometry using novel biosynthetic [U-15N]deoxycytidine and [U-15N]methyldeoxycytidine internal standards. Nucleic Acids Res 36:e119

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Spruijt CG, Gnerlich F, Smits AH, Pfaffeneder T, Jansen PWTC, Bauer C, Münzel M, Wagner M, Müller M, Khan F, Eberl HC, Mensinga A, Brinkman Arie B, Lephikov K, Müller U, Walter J, Boelens R, van Ingen H, Leonhardt H, Carell T, Vermeulen M (2013) Dynamic readers for 5-(hydroxy)methylcytosine and its oxidized derivatives. Cell 152(5):1146–1159. doi:10.1016/j.cell.2013.02.004

    Article  CAS  PubMed  Google Scholar 

  31. Balaghi M, Wagner C (1993) DNA methylation in folate deficiency: use of CpG methylase. Biochem Biophys Res Commun 193(3):1184–1190. doi:http://dx.doi.org/10.1006/bbrc.1993.1750

    Article  CAS  PubMed  Google Scholar 

  32. Karimi M, Johansson S, Stach D, Corcoran M, Grandér D, Schalling M, Bakalkin G, Lyko F, Larsson C, Ekström TJ (2006) LUMA (LUminometric Methylation Assay)—a high throughput method to the analysis of genomic DNA methylation. Exp Cell Res 312(11):1989–1995. doi:http://dx.doi.org/10.1016/j.yexcr.2006.03.006

    Article  CAS  PubMed  Google Scholar 

  33. Herman JG, Graff JR, Myöhänen S, Nelkin BD, Baylin SB (1996) Methylation-specific PCR: a novel PCR assay for methylation status of CpG islands. Proc Natl Acad Sci U S A 93:9821–9826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Campan M, Weisenberger D, Trinh B, Laird P (2009) MethyLight. In: Tost J (ed) DNA methylation. Methods in molecular biology, vol 507. New York, N.Y. Humana Press: [London: Springer, distributor], pp 325–337. doi:10.1007/978-1-59745-522-0_23

    Google Scholar 

  35. Tost J, Jenny D, Gut IG (2003) Analysis and quantification of multiple methylation variable positions in CpG islands by pyrosequencing. Biotechniques 35:152–156

    CAS  PubMed  Google Scholar 

  36. Bibikova M, Barnes B, Tsan C, Ho V, Klotzle B, Le JM, Delano D, Zhang L, Schroth GP, Gunderson KL, Fan J-B, Shen R (2011) High density DNA methylation array with single CpG site resolution. Genomics 98(4):288–295. doi:http://dx.doi.org/10.1016/j.ygeno.2011.07.007

    Article  CAS  PubMed  Google Scholar 

  37. Heijmans BT, Mill J (2012) Commentary: the seven plagues of epigenetic epidemiology. Int J Epidemiol 41(1):74–78. doi:10.1093/ije/dyr225

    Article  PubMed  PubMed Central  Google Scholar 

  38. Heijmans BT, Kremer D, Tobi EW, Boomsma DI, Slagboom PE (2007) Heritable rather than age-related environmental and stochastic factors dominate variation in DNA methylation of the human IGF2/H19 locus. Hum Mol Genet 16(5):547–554. doi:10.1093/hmg/ddm010

    Article  CAS  PubMed  Google Scholar 

  39. van Vlodrop IJH, Niessen HEC, Derks S, Baldewijns MMLL, van Criekinge W, Herman JG, van Engeland M (2011) Analysis of promoter CpG island hypermethylation in cancer: location, location, location! Clin Cancer Res 17(13):4225–4231. doi:10.1158/1078-0432.ccr-10-3394

    Article  PubMed  CAS  Google Scholar 

  40. Network TCGA (2012) Comprehensive molecular portraits of human breast tumours. Nature 490(7418):61–70. doi:http://www.nature.com/nature/journal/v490/n7418/abs/nature11412.html#supplementary-information

    Article  CAS  Google Scholar 

  41. Fackler MJ, Umbricht CB, Williams D, Argani P, Cruz L-A, Merino VF, Teo WW, Zhang Z, Huang P, Visvananthan K, Marks J, Ethier S, Gray JW, Wolff AC, Cope LM, Sukumar S (2011) Genome-wide methylation analysis identifies genes specific to breast cancer hormone receptor status and risk of recurrence. Cancer Res 71(19):6195–6207. doi:10.1158/0008-5472.can-11-1630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Widschwendter M, Siegmund KD, Müller HM, Fiegl H, Marth C, Müller-Holzner E, Jones PA, Laird PW (2004) Association of breast cancer DNA methylation profiles with hormone receptor status and response to tamoxifen. Cancer Res 64(11):3807–3813. doi:10.1158/0008-5472.can-03-3852

    Article  CAS  PubMed  Google Scholar 

  43. Flanagan JM, Cocciardi S, Waddell N, Johnstone CN, Marsh A, Henderson S, Simpson P, da Silva L, Khanna K, Lakhani S, Boshoff C, Chenevix-Trench G (2010) DNA methylome of familial breast cancer identifies distinct profiles defined by mutation status. Am J Hum Genet 86(3):420–433. doi:http://dx.doi.org/10.1016/j.ajhg.2010.02.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Dedeurwaerder S, Desmedt C, Calonne E, Singhal SK, Haibe‐Kains B, Defrance M, Michiels S, Volkmar M, Deplus R, Luciani J, Lallemand F, Larsimont D, Toussaint J, Haussy S, Rothé F, Rouas G, Metzger O, Majjaj S, Saini K, Putmans P, Hames G, van Baren N, Coulie PG, Piccart M, Sotiriou C, Fuks F (2011) DNA methylation profiling reveals a predominant immune component in breast cancers. EMBO Mol Med 3(12):726–741. doi:10.1002/emmm.201100801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Hill VK, Ricketts C, Bieche I, Vacher S, Gentle D, Lewis C, Maher ER, Latif F (2011) Genome-wide DNA methylation profiling of CpG islands in breast cancer identifies novel genes associated with tumorigenicity. Cancer Res 71(8):2988–2999. doi:10.1158/0008-5472.can-10-4026

    Article  CAS  PubMed  Google Scholar 

  46. Fiegl H, Jones A, Hauser-Kronberger C, Hutarew G, Reitsamer R, Jones RL, Dowsett M, Mueller-Holzner E, Windbichler G, Daxenbichler G, Goebel G, Ensinger C, Jacobs I, Widschwendter M (2008) Methylated NEUROD1 promoter is a marker for chemosensitivity in breast cancer. Clin Cancer Res 14(11):3494–3502. doi:10.1158/1078-0432.ccr-07-4557

    Article  CAS  PubMed  Google Scholar 

  47. Cho YH, Shen J, Gammon MD, Zhang YJ, Wang Q, Gonzalez K, Xu X, Bradshaw PT, Teitelbaum SL, Garbowski G, Hibshoosh H, Neugut AI, Chen J, Santella RM (2012) Prognostic significance of gene-specific promoter hypermethylation in breast cancer patients. Breast Cancer Res Treat 131:197–205. doi:10.1007/s10549-011-1712-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Akhoondi S, Lindstrom L, Widschwendter M, Corcoran M, Bergh J, Spruck C, Grander D, Sangfelt O (2010) Inactivation of FBXW7/hCDC4-beta expression by promoter hypermethylation is associated with favorable prognosis in primary breast cancer. Breast Cancer Res 12(6):R105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Xu X, Gammon M, Zhang Y, Cho Y, Wetmur J, Bradshaw P, Garbowski G, Hibshoosh H, Teitelbaum S, Neugut A, Santella R, Chen J (2010) Gene promoter methylation is associated with increased mortality among women with breast cancer. Breast Cancer Res Treat 121(3):685–692. doi:10.1007/s10549-009-0628-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Hartmann O, Spyratos F, Harbeck N, Dietrich D, Fassbender A, Schmitt M, Eppenberger-Castori S, Vuaroqueaux V, Lerebours F, Welzel K, Maier S, Plum A, Niemann S, Foekens JA, Lesche R, Martens JWM (2009) DNA methylation markers predict outcome in node-positive, estrogen receptor-positive breast cancer with adjuvant anthracycline-based chemotherapy. Clin Cancer Res 15(1):315–323. doi:10.1158/1078-0432.ccr-08-0166

    Article  CAS  PubMed  Google Scholar 

  51. Szyf M (2009) Epigenetics, DNA methylation, and chromatin modifying drugs. Annu Rev Pharmacol Toxicol 49(1):243–263. doi:10.1146/annurev-pharmtox-061008-103102

    Article  CAS  PubMed  Google Scholar 

  52. Huang YT, Li FF, Ke C, Li Z, Li ZT, Zou XF, Zheng XX, Chen YP, Zhang H (2013) PTPRO promoter methylation is predictive of poorer outcome for HER2-positive breast cancer: indication for personalized therapy. J Transl Med 11:245. doi:10.1186/1479-5876-11-245

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Lu L, Zhu G, Zhang C, Deng Q, Katsaros D, Mayne ST, Risch HA, Mu L, Canuto EM, Gregori G, Benedetto C, Yu H (2012) Association of large noncoding RNA HOTAIR expression and its downstream intergenic CpG island methylation with survival in breast cancer. Breast Cancer Res Treat 136(3):875–883. doi:10.1007/s10549-012-2314-z

    Article  CAS  PubMed  Google Scholar 

  54. van Hoesel AQ, van de Velde CJ, Kuppen PJ, Liefers GJ, Putter H, Sato Y, Elashoff DA, Turner RR, Shamonki JM, de Kruijf EM, van Nes JG, Giuliano AE, Hoon DS (2012) Hypomethylation of LINE-1 in primary tumor has poor prognosis in young breast cancer patients: a retrospective cohort study. Breast Cancer Res Treat 134(3):1103–1114. doi:10.1007/s10549-012-2038-0

    Article  CAS  PubMed  Google Scholar 

  55. van Hoesel AQ, van de Velde CJ, Kuppen PJ, Putter H, de Kruijf EM, van Nes JG, Giuliano AE, Hoon DS (2012) Primary tumor classification according to methylation pattern is prognostic in patients with early stage ER-negative breast cancer. Breast Cancer Res Treat 131(3):859–869. doi:10.1007/s10549-011-1485-3

    Article  CAS  PubMed  Google Scholar 

  56. Xu Y, Diao L, Chen Y, Liu Y, Wang C, Ouyang T, Li J, Wang T, Fan Z, Fan T, Lin B, Deng D, Narod SA, Xie Y (2013) Promoter methylation of BRCA1 in triple-negative breast cancer predicts sensitivity to adjuvant chemotherapy. Ann Oncol 24(6):1498–1505. doi:10.1093/annonc/mdt011

    Article  CAS  PubMed  Google Scholar 

  57. Hsu NC, Huang YF, Yokoyama KK, Chu PY, Chen FM, Hou MF (2013) Methylation of BRCA1 promoter region is associated with unfavorable prognosis in women with early-stage breast cancer. PLoS One 8 (2):e56256. doi:10.1371/journal.pone.0056256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Noetzel E, Rose M, Sevinc E, Hilgers RD, Hartmann A, Naami A, Knuchel R, Dahl E (2010) Intermediate filament dynamics and breast cancer: aberrant promoter methylation of the synemin gene is associated with early tumor relapse. Oncogene 29(34):4814–4825. doi:10.1038/onc.2010.229

    Article  CAS  PubMed  Google Scholar 

  59. Li SY, Li R, Chen YL, Xiong LK, Wang HL, Rong L, Luo RC (2014) Aberrant PTPRO methylation in tumor tissues as a potential biomarker that predicts clinical outcomes in breast cancer patients. BMC Genet 15:67. doi:10.1186/1471-2156-15-67

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Cho YH, Shen J, Gammon MD, Zhang YJ, Wang Q, Gonzalez K, Xu X, Bradshaw PT, Teitelbaum SL, Garbowski G, Hibshoosh H, Neugut AI, Chen J, Santella RM (2012) Prognostic significance of gene-specific promoter hypermethylation in breast cancer patients. Breast Cancer Res Treat 131(1):197–205. doi:10.1007/s10549-011-1712-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Nimmrich I, Sieuwerts AM, Meijer-van Gelder ME, Schwope I, Bolt-de Vries J, Harbeck N, Koenig T, Hartmann O, Kluth A, Dietrich D, Magdolen V, Portengen H, Look MP, Klijn JG, Lesche R, Schmitt M, Maier S, Foekens JA, Martens JW (2008) DNA hypermethylation of PITX2 is a marker of poor prognosis in untreated lymph node-negative hormone receptor-positive breast cancer patients. Breast Cancer Res Treat 111(3):429–437. doi:10.1007/s10549-007-9800-8

    Article  CAS  PubMed  Google Scholar 

  62. Lo Nigro C, Monteverde M, Lee S, Lattanzio L, Vivenza D, Comino A, Syed N, McHugh A, Wang H, Proby C, Garrone O, Merlano M, Hatzimichael E, Briasoulis E, Gojis O, Palmieri C, Jordan L, Quinlan P, Thompson A, Crook T (2012) NT5E CpG island methylation is a favourable breast cancer biomarker. Br J Cancer 107(1):75–83. doi:10.1038/bjc.2012.212

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Xu J, Shetty PB, Feng W, Chenault C, Bast RC Jr, Issa JP, Hilsenbeck SG, Yu Y (2012) Methylation of HIN-1, RASSF1A, RIL and CDH13 in breast cancer is associated with clinical characteristics, but only RASSF1A methylation is associated with outcome. BMC Cancer 12:243. doi:10.1186/1471-2407-12-243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Fujita N, Nakayama T, Yamamoto N, Kim SJ, Shimazu K, Shimomura A, Maruyama N, Morimoto K, Tamaki Y, Noguchi S (2012) Methylated DNA and total DNA in serum detected by one-step methylation-specific PCR is predictive of poor prognosis for breast cancer patients. Oncology 83(5):273–282. doi:10.1159/000342083

    Article  CAS  PubMed  Google Scholar 

  65. Fleischer T, Frigessi A, Johnson KC, Edvardsen H, Touleimat N, Klajic J, Riis M, Haakensen VD, Warnberg F, Naume B, Helland A, Borresen-Dale AL, Tost J, Christensen BC, Kristensen VN (2014) Genome-wide DNA methylation profiles in progression toin situ and invasive carcinoma of the breast with impact on gene transcription and prognosis. Genome Biol 15(8):435. doi:10.1186/PREACCEPT-2333349012841587

    PubMed  PubMed Central  Google Scholar 

  66. Muller HM, Widschwendter A, Fiegl H, Ivarsson L, Goebel G, Perkmann E, Marth C, Widschwendter M (2003) DNA methylation in serum of breast cancer patients: an independent prognostic marker. Cancer Res 63 (22):7641–7645

    PubMed  Google Scholar 

  67. Chimonidou M, Tzitzira A, Strati A, Sotiropoulou G, Sfikas C, Malamos N, Georgoulias V, Lianidou E (2013) CST6 promoter methylation in circulating cell-free DNA of breast cancer patients. Clin Biochem 46(3):235–240. doi:10.1016/j.clinbiochem.2012.09.015

    Article  CAS  PubMed  Google Scholar 

  68. Sharma G, Mirza S, Parshad R, Srivastava A, Gupta SD, Pandya P, Ralhan R (2011) Clinical significance of Maspin promoter methylation and loss of its protein expression in invasive ductal breast carcinoma: correlation with VEGF-A and MTA1 expression. Tumour Biol: J Int Soc Oncodev Biol Med 32(1):23–32. doi:10.1007/s13277-010-0087-8

    Article  CAS  Google Scholar 

  69. Fiegl H, Jones A, Hauser-Kronberger C, Hutarew G, Reitsamer R, Jones RL, Dowsett M, Mueller-Holzner E, Windbichler G, Daxenbichler G, Goebel G, Ensinger C, Jacobs I, Widschwendter M (2008) Methylated NEUROD1 promoter is a marker for chemosensitivity in breast cancer. Clin Cancer Res: Off J Am Assoc Cancer Res 14(11):3494–3502. doi:10.1158/1078-0432.CCR-07-4557

    Article  CAS  Google Scholar 

  70. Gobel G, Auer D, Gaugg I, Schneitter A, Lesche R, Muller-Holzner E, Marth C, Daxenbichler G (2011) Prognostic significance of methylated RASSF1A and PITX2 genes in blood- and bone marrow plasma of breast cancer patients. Breast Cancer Res Treat 130(1):109–117. doi:10.1007/s10549-010-1335-8

    Article  PubMed  CAS  Google Scholar 

  71. Mirza S, Sharma G, Parshad R, Srivastava A, Gupta SD, Ralhan R (2010) Clinical significance of stratifin, ERalpha and PR promoter methylation in tumor and serum DNA in Indian breast cancer patients. Clin Biochem 43(4–5):380–386. doi:10.1016/j.clinbiochem.2009.11.016

    Article  CAS  PubMed  Google Scholar 

  72. Mirza S, Sharma G, Parshad R, Srivastava A, Gupta SD, Ralhan R (2012) Clinical significance of promoter hypermethylation of ERbeta and RARbeta2 in tumor and serum DNA in Indian breast cancer patients. Ann Surg Oncol 19(9):3107–3115. doi:10.1245/s10434-012-2323-5

    Article  PubMed  Google Scholar 

  73. Jing F, Jun L, Yong Z, Wang Y, Fei X, Zhang J, Hu L (2008) Multigene methylation in serum of sporadic Chinese female breast cancer patients as a prognostic biomarker. Oncology 75(1–2):60–66. doi:10.1159/000155145

    Article  CAS  PubMed  Google Scholar 

  74. Bjornsson HT, Sigurdsson MI, Fallin MD, Irizarry RA, Aspelund T, Cui H, Yu W, Rongione MA, Ekström TJ, Harris TB, Launer LJ, Eiriksdottir G, Leppert MF, Sapienza C, Gudnason V, Feinberg AP (2008) Intra-individual change over time in DNA methylation with familial clustering. J Am Med Assoc 299(24):2877–2883. doi:10.1001/jama.299.24.2877

    Article  CAS  Google Scholar 

  75. Bollati V, Schwartz J, Wright R, Litonjua A, Tarantini L, Suh H, Sparrow D, Vokonas P, Baccarelli A (2009) Decline in genomic DNA methylation through aging in a cohort of elderly subjects. Mech Ageing Dev 130(4):234–239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Wu H-C, Wang Q, Delgado-Cruzata L, Santella RM, Terry MB (2012) Genomic methylation changes over time in peripheral blood mononuclear cell DNA: differences by assay type and baseline values. Cancer Epidemiol Biomark Prev 21(8):1314–1318. doi:10.1158/1055-9965.epi-12-0300

    Article  CAS  Google Scholar 

  77. Liggett TE, Melnikov AA, Marks JR, Levenson VV (2011) Methylation patterns in cell-free plasma DNA reflect removal of the primary tumor and drug treatment of breast cancer patients. Int J Cancer 128(2):492–499. doi:10.1002/ijc.25363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Mandelblatt JS, Cronin KA, Bailey S, Berry DA, de Koning HJ, Draisma G, Huang H, Lee SJ, Munsell M, Plevritis SK, Ravdin P, Schechter CB, Sigal B, Stoto MA, Stout NK, van Ravesteyn NT, Venier J, Zelen M, Feuer EJ (2009) Effects of mammography screening under different screening schedules: model estimates of potential benefits and harms. Ann Intern Med 151(10):738–747. doi:10.7326/0003-4819-151-10-200911170-00010

    Article  PubMed  PubMed Central  Google Scholar 

  79. Webb ML, Cady B, Michaelson JS, Bush DM, Calvillo KZ, Kopans DB, Smith BL (2013) A failure analysis of invasive breast cancer. Cancer. doi:10.1002/cncr.28199. doi:10.1002/cncr.28199

    Google Scholar 

  80. Elmore JG, Barton MB, Moceri VM, Polk S, Arena PJ, Fletcher SW (1998) Ten-year risk of false positive screening mammograms and clinical breast examinations. N Engl J Med 338(16):1089–1096. doi:10.1056/NEJM199804163381601

    Article  CAS  PubMed  Google Scholar 

  81. Alagaratnam TT, Wong J (1985) Limitations of mammography in Chinese females. Clin Radiol 36(2):175–177

    Article  CAS  PubMed  Google Scholar 

  82. Moss S (2004) Should women under 50 be screened for breast cancer? Br J Cancer 91(3):413–417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Qaseem A, Snow V, Sherif K, Aronson M, Weiss KB, Owens DK (2007) Screening mammography for women 40 to 49 years of age: a clinical practice guideline from the American College of physicians. Ann Intern Med 146(7):511–515. doi:10.7326/0003-4819-146-7-200704030-00007

    Article  PubMed  Google Scholar 

  84. Wald NJ, Hackshaw AK, Frost CD (1999) When can a risk factor be used as a worthwhile screening test? BMJ 319(7224):1562–1565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Andriole GL, Crawford ED, Grubb RL 3rd, Buys SS, Chia D, Church TR, Fouad MN, Gelmann EP, Kvale PA, Reding DJ, Weissfeld JL, Yokochi LA, O’Brien B, Clapp JD, Rathmell JM, Riley TL, Hayes RB, Kramer BS, Izmirlian G, Miller AB, Pinsky PF, Prorok PC, Gohagan JK, Berg CD, Team PP (2009) Mortality results from a randomized prostate-cancer screening trial. N Engl J Med 360(13):1310–1319. doi:10.1056/NEJMoa0810696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Buys SS, Partridge E, Black A, Johnson CC, Lamerato L, Isaacs C, Reding DJ, Greenlee RT, Yokochi LA, Kessel B, Crawford ED, Church TR, Andriole GL, Weissfeld JL, Fouad MN, Chia D, O’Brien B, Ragard LR, Clapp JD, Rathmell JM, Riley TL, Hartge P, Pinsky PF, Zhu CS, Izmirlian G, Kramer BS, Miller AB, Xu JL, Prorok PC, Gohagan JK, Berg CD, Team PP (2011) Effect of screening on ovarian cancer mortality: the Prostate, Lung, Colorectal and Ovarian (PLCO) cancer screening randomized controlled trial. J Am Med Assoc 305(22):2295–2303. doi:10.1001/jama.2011.766

    Article  CAS  Google Scholar 

  87. Yamada T, Nakamori S, Ohzato H, Oshima S, Aoki T, Higaki N, Sugimoto K, Akagi K, Fujiwara Y, Nishisho I, Sakon M, Gotoh M, Monden M (1998) Detection of K-ras gene mutations in plasma DNA of patients with pancreatic adenocarcinoma: correlation with clinicopathological features. Clin Cancer Res 4(6):1527–1532

    CAS  PubMed  Google Scholar 

  88. Jackson PE, Qian G-S, Friesen MD, Zhu Y-R, Lu P, Wang J-B, Wu Y, Kensler TW, Vogelstein B, Groopman JD (2001) Specific p53 mutations detected in plasma and tumors of hepatocellular carcinoma patients by electrospray ionization mass spectrometry. Cancer Res 61(1):33–35

    CAS  PubMed  Google Scholar 

  89. Gormally E, Caboux E, Vineis P, Hainaut P (2007) Circulating free DNA in plasma or serum as biomarker of carcinogenesis: practical aspects and biological significance. MutatRes 635:105–117

    CAS  Google Scholar 

  90. Haber DA, Velculescu VE (2014) Blood-based analyses of cancer: circulating tumor cells and circulating tumor DNA. Cancer Discov. doi:10.1158/2159-8290.cd-13-1014

    Google Scholar 

  91. Breitbach S, Tug S, Simon P (2012) Circulating cell-free DNA: an up-coming molecular marker in exercise physiology. Sports Med 42(7):565–586. doi:10.2165/11631380-000000000-00000

    Article  PubMed  Google Scholar 

  92. Wang W, Srivastava S (2010) Strategic approach to validating methylated genes as biomarkers for breast cancer. Cancer Prev Res 3(1):16–24. doi:10.1158/1940-6207.capr-09-0098

    Article  Google Scholar 

  93. Van De Voorde L, Speeckaert R, Van Gestel D, Bracke M, De Neve W, Delanghe J, Speeckaert M (2012) DNA methylation-based biomarkers in serum of patients with breast cancer. Mutat Res (Reviews in Mutation Research) 751(2):304–325. doi:http://dx.doi.org/10.1016/j.mrrev.2012.06.001

    Article  CAS  Google Scholar 

  94. Suijkerbuijk KPM, van Diest PJ, van der Wall E (2011) Improving early breast cancer detection: focus on methylation. Ann Oncol 22(1):24–29. doi:10.1093/annonc/mdq305

    Article  CAS  PubMed  Google Scholar 

  95. Yazici H, Terry MB, Cho YH, Senie RT, Liao Y, Andrulis I, Santella RM (2009) Aberrant methylation of RASSF1A in plasma DNA before breast cancer diagnosis in the breast cancer family registry. Cancer Epidemiol Biomark Prev 18(10):2723–2725. doi:1055-9965.EPI-08-1237 [pii] 10.1158/1055-9965.EPI-08-1237 [doi]

    Article  CAS  Google Scholar 

  96. Brooks JD, Cairns P, Shore RE, Klein CB, Wirgin I, Afanasyeva Y, Zeleniuch-Jacquotte A (2010) DNA methylation in pre-diagnostic serum samples of breast cancer cases: results of a nested case–control study. Cancer Epidemiol 34(6):717–723. doi:http://dx.doi.org/10.1016/j.canep.2010.05.006

    Article  PubMed  PubMed Central  Google Scholar 

  97. Guerrero-Preston R, Guerrero-Preston R, Hadar T, Hadar T, Ostrow K, Ostrow K, Soudry E, Soudry E, Echenique M, Echenique M, Ili-Gangas C, Ili-Gangas C, Pérez G, Pérez G, Perez J, Perez J, Brebi-Mieville P, Brebi-Mieville P, Deschamps J, Deschamps J, Morales L, Morales L, Bayona M, Bayona M, Sidransky D, Sidransky D, Matta J, Matta J (2014) Differential promoter methylation of kinesin family member 1a in plasma is associated with breast cancer and DNA repair capacity. Oncol Rep 32(2):505–512

    PubMed  PubMed Central  Google Scholar 

  98. Papadopoulou E, Davilas E, Sotiriou V, Georgakopoulos E, Georgakopoulou S, Koliopanos A, Aggelakis F, Dardoufas K, Agnanti NJ, Karydas I, Nasioulas G (2006) Cell-free DNA and RNA in plasma as a new molecular marker for prostate and breast cancer. Ann N Y Acad Sci 1075:235–243. doi:10.1196/annals.1368.032

    Article  CAS  PubMed  Google Scholar 

  99. Van der Auwera I, Elst HJ, Van Laere SJ, Maes H, Huget P, van Dam P, Van Marck EA, Vermeulen PB, Dirix LY (2009) The presence of circulating total DNA and methylated genes is associated with circulating tumour cells in blood from breast cancer patients. Br J Cancer 100(8):1277–1286. doi:10.1038/sj.bjc.6605013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Fan HC, Blumenfeld YJ, Chitkara U, Hudgins L, Quake SR (2010) Analysis of the size distributions of fetal and maternal cell-free DNA by paired-end sequencing. Clin Chem 56(8):1279–1286. doi:10.1373/clinchem.2010.144188

    Article  CAS  PubMed  Google Scholar 

  101. Shen J, Wang S, Zhang Y-J, Kappil M, Wu H-C, Kibriya MG, Wang Q, Jasmine F, Ahsan H, Lee P-H, Yu M-W, Chen C-J, Santella RM (2012) Genome-wide DNA methylation profiles in hepatocellular carcinoma. Hepatology 55(6):1799–1808. doi:10.1002/hep.25569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Lo YMD (2000) Fetal DNA in maternal plasma: biology and diagnostic applications. Clin Chem 46(12):1903–1906

    CAS  PubMed  Google Scholar 

  103. PDQ Screening and Prevention Editorial Board (2015) Breast cancer screening (PDQ): Health professional version. PDQ Cancer Information Summaries. National Cancer Institute (US), Bethesda (MD), 2002

    Google Scholar 

  104. National Comprehensive Cancer Network (NCCN) (2013) NCCN clinical practice guidelines in oncology: breast cancer screening and diagnosis, Version 1 2013

    Google Scholar 

  105. Duffy S, Mackay J, Thomas S, Anderson E, Chen T, Ellis I, Evans G, Fielder H, Fox R, Gui G, Macmillan D, Moss S, Rogers C, Sibbering M, Wallis M, Warren R, Watson E, Whynes D, Allgood P, Caunt J (2013) Evaluation of mammographic surveillance services in women aged 40–49 years with a moderate family history of breast cancer: a single-arm cohort study. Health Technol Assess 17:vii–xiv

    Article  CAS  PubMed  Google Scholar 

  106. Suijkerbuijk KP, van der Wall E, Vooijs M, van Diest PJ (2008) Molecular analysis of nipple fluid for breast cancer screening. Pathobiology: J Immunopathol Mol Cell Biol 75(2):149–152. doi:10.1159/000123853

    Article  PubMed  Google Scholar 

  107. Dua RS, Isacke CM, Gui GPH (2006) The intraductal approach to breast cancer biomarker discovery. J Oncol 24(7):1209–1216. doi:10.1200/jco.2005.04.1830

    Article  Google Scholar 

  108. Evron E, Dooley WC, Umbricht CB, Rosenthal D, Sacchi N, Gabrielson E, Soito AB, Hung DT, Ljung B-M, Davidson NE, Sukumar S (2001) Detection of breast cancer cells in ductal lavage fluid by methylation-specific PCR. Lancet 357(9265):1335–1336. doi:http://dx.doi.org/10.1016/S0140-6736(00)04501-3

    Article  CAS  PubMed  Google Scholar 

  109. Twelves D, Nerurkar A, Osin P, Dexter T, Ward A, Gui GH, Isacke C (2013) DNA promoter hypermethylation profiles in breast duct fluid. Breast Cancer Res Treat 139(2):341–350. doi:10.1007/s10549-013-2544-8

    Article  CAS  PubMed  Google Scholar 

  110. Fackler MJ, McVeigh M, Mehrotra J, Blum MA, Lange J, Lapides A, Garrett E, Argani P, Sukumar S (2004) Quantitative multiplex methylation-specific PCR assay for the detection of promoter hypermethylation in multiple genes in breast cancer. Cancer Res 64(13):4442–4452. doi:10.1158/0008-5472.CAN-03-3341

    Article  CAS  PubMed  Google Scholar 

  111. Fackler MJ, Malone K, Zhang Z, Schilling E, Garrett-Mayer E, Swift-Scanlan T, Lange J, Nayar R, Davidson NE, Khan SA, Sukumar S (2006) Quantitative multiplex methylation-specific PCR analysis doubles detection of tumor cells in breast ductal fluid. Clin Cancer Res: Off J Am Assoc Cancer Res 12(11 Pt 1):3306–3310. doi:10.1158/1078-0432.CCR-05-2733

    Article  CAS  Google Scholar 

  112. Antill YC, Mitchell G, Johnson SA, Devereux L, Milner A, Di Iulio J, Lindeman GJ, Kirk J, Phillips KA, Campbell IG (2010) Gene methylation in breast ductal fluid from BRCA1 and BRCA2 mutation carriers. Cancer Epidemiol Biomark Prev 19(1):265–274. doi:10.1158/1055-9965.epi-09-0359

    Article  CAS  Google Scholar 

  113. Locke I, Kote-Jarai Z, Fackler MJ, Bancroft E, Osin P, Nerurkar A, Izatt L, Pichert G, Gui GP, Eeles RA (2007) Gene promoter hypermethylation in ductal lavage fluid from healthy BRCA gene mutation carriers and mutation-negative controls. Breast Cancer Res 9(1):R20. doi:10.1186/bcr1657

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Schuebel KE, Chen W, Cope L, Glöckner SC, Suzuki H, Yi J-M, Chan TA, Neste LV, Criekinge WV, Bosch Svd, van Engeland M, Ting AH, Jair K, Yu W, Toyota M, Imai K, Ahuja N, Herman JG, Baylin SB (2007) Comparing the DNA Hypermethylome with gene mutations in human colorectal cancer. PLoS Genet 3(9):e157. doi:10.1371/journal.pgen.0030157

    Article  PubMed Central  CAS  Google Scholar 

  115. Ushijima T, Asada K (2010) Aberrant DNA methylation in contrast with mutations. Cancer Sci 101(2):300–305. doi:10.1111/j.1349-7006.2009.01434.x

    Article  CAS  PubMed  Google Scholar 

  116. Hoque MO, Prencipe M, Poeta ML, Barbano R, Valori VM, Copetti M, Gallo AP, Brait M, Maiello E, Apicella A, Rossiello R, Zito F, Stefania T, Paradiso A, Carella M, Dallapiccola B, Murgo R, Carosi I, Bisceglia M, Fazio VM, Sidransky D, Parrella P (2009) Changes in CpG islands promoter methylation patterns during ductal breast carcinoma progression. Cancer Epidemiol Biomark Prev 18(10):2694–2700. doi:10.1158/1055-9965.epi-08-0821

    Article  CAS  Google Scholar 

  117. Lewis CM, Cler LR, Bu D-W, Zöchbauer-Müller S, Milchgrub S, Naftalis EZ, Leitch AM, Minna JD, Euhus DM (2005) Promoter hypermethylation in benign breast epithelium in relation to predicted breast cancer risk. Clin Cancer Res 11(1):166–172

    CAS  PubMed  Google Scholar 

  118. Pasquali L, Bedeir A, Ringquist S, Styche A, Bhargava R, Trucco G (2007) Quantification of CpG island methylation in progressive breast lesions from normal to invasive carcinoma. Cancer Lett 257(1):136–144. doi:http://dx.doi.org/10.1016/j.canlet.2007.07.010

    Article  CAS  PubMed  Google Scholar 

  119. Zhu J, Yao X (2009) Use of DNA methylation for cancer detection: promises and challenges. Int J Biochem Cell Biol 41(1):147–154. doi:http://dx.doi.org/10.1016/j.biocel.2008.09.003

    Article  CAS  PubMed  Google Scholar 

  120. Sidransky D (1997) Nucleic acid-based methods for the detection of cancer. Science 278(5340):1054–1058. doi:10.1126/science.278.5340.1054

    Article  CAS  PubMed  Google Scholar 

  121. Herman JG, Baylin SB (2003) Gene silencing in cancer in association with promoter hypermethylation. N Engl J Med 349(21):2042–2054. doi:10.1056/NEJMra023075

    Article  CAS  PubMed  Google Scholar 

  122. Terry MB, Delgado-Cruzata L, Vin-Raviv N, Wu HC, Santella RM (2011) DNA methylation in white blood cells: association with risk factors in epidemiologic studies. Epigenetics: Off J DNA Methylation Soc 6(7):828–837. doi:16500 [pii]

    Article  CAS  Google Scholar 

  123. Brennan K, Flanagan JM (2012) Is there a link between genome-wide hypomethylation in blood and cancer risk? Cancer Prev Res 5(12):1345–1357. doi:10.1158/1940-6207.capr-12-0316

    Article  CAS  Google Scholar 

  124. Choi J-Y, James SR, Link PA, McCann SE, Hong C-C, Davis W, Nesline MK, Ambrosone CB, Karpf AR (2009) Association between global DNA hypomethylation in leukocytes and risk of breast cancer. Carcinogenesis 30:1889–1897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Xu X, Gammon MD, Hernandez-Vargas H, Herceg Z, Wetmur JG, Teitelbaum SL, Bradshaw PT, Neugut AI, Santella RM, Chen J (2012) DNA methylation in peripheral blood measured by LUMA is associated with breast cancer in a population-based study. FASEB J 26(6):2657–2666. doi:10.1096/fj.11-197251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Cho Y, Yazici H, Wu H, Terry M, Gonzalez K, Qu M, Dalay N, Santella R (2010) Aberrant promoter hypermethylation and genomic hypomethylation in tumor, adjacent normal tissues and blood from breast cancer patients. Anticancer Res 3(7):2489–2496

    Google Scholar 

  127. Delgado-Cruzata L, Wu H-C, Perrin M, Liao Y, Kappil MA, Ferris JS, Flom JD, Yazici H, Santella RM, Terry MB (2012) Global DNA methylation levels in white blood cell DNA from sisters discordant for breast cancer from the New York site of the Breast Cancer Family Registry. Epigenetics: Off J DNA Methylation Soc 7(8):868–874

    Article  CAS  Google Scholar 

  128. Kuchiba A, Iwasaki M, Ono H, Kasuga Y, Yokoyama S, Onuma H, Nishimura H, Kusama R, Tsugane S, Yoshida T (2014) Global methylation levels in peripheral blood leukocyte DNA by LUMA and breast cancer: a case-control study in Japanese women. Br J Cancer 110(11):2765–2771. doi:10.1038/bjc.2014.223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Wu H-C, Delgado-Cruzata L, Flom JD, Perrin M, Liao Y, Ferris JS, Santella RM, Terry MB (2012) Repetitive element DNA methylation levels in white blood cell DNA from sisters discordant for breast cancer from the New York site of the Breast Cancer Family Registry. Carcinogenesis 33(10):1946–1952. doi:10.1093/carcin/bgs201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Brennan K, Garcia-Closas M, Orr N, Fletcher O, Jones M, Ashworth A, Swerdlow A, Thorne H, Riboli E, Vineis P, Dorronsoro M, Clavel-Chapelon F, Panico S, Onland-Moret NC, Trichopoulos D, Kaaks R, Khaw K-T, Brown R, Flanagan JM (2012) Intragenic ATM methylation in peripheral blood DNA as a biomarker of breast cancer risk. Cancer Res 72(9):2304–2313. doi:10.1158/0008-5472.can-11-3157

    Article  CAS  PubMed  Google Scholar 

  131. DeRoo LA, Bolick SCE, Xu Z, Umbach DM, Shore D, Weinberg CR, Sandler DP, Taylor JA (2014) Global DNA methylation and one-carbon metabolism gene polymorphisms and the risk of breast cancer in the sister study. Carcinogenesis 35(2):333–338. doi:10.1093/carcin/bgt342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Widschwendter M, Apostolidou S, Raum E, Rothenbacher D, Fiegl H, Menon U, Stegmaier C, Jacobs I, Brenner H (2008) Epigenotyping in peripheral blood cell DNA and breast cancer risk: a proof of principle study. PLoS One 3(7):e2656

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  133. Iwamoto T, Yamamoto N, Taguchi T, Tamaki Y, Noguchi S (2010) BRCA1 promoter methylation in peripheral blood cells is associated with increased risk of breast cancer with BRCA1 promoter methylation. Breast Cancer Res Treat 1–9. doi:10.1007/s10549-010-1188-1

    Google Scholar 

  134. Bosviel R, Garcia S, Lavediaux G, Michard E, Dravers M, Kwiatkowski F, Bignon Y-J, Bernard-Gallon DJ (2012) BRCA1 promoter methylation in peripheral blood DNA was identified in sporadic breast cancer and controls. Cancer Epidemiol 36(3):e177–e182. doi:http://dx.doi.org/10.1016/j.canep.2012.02.001

    Article  CAS  PubMed  Google Scholar 

  135. Flanagan JM, Munoz-Alegre M, Henderson S, Tang T, Sun P, Johnson N, Fletcher O, dos Santos Silva I, Peto J, Boshoff C, Narod S, Petronis A (2009) Gene-body hypermethylation of ATM in peripheral blood DNA of bilateral breast cancer patients. Hum Mol Genet 18(7):1332–1342. doi:10.1093/hmg/ddp033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Xu Z, Bolick SC, DeRoo LA, Weinberg CR, Sandler DP, Taylor JA (2013) Epigenome-wide association study of breast cancer using prospectively collected sister study samples. J Natl Cancer Inst 105(10):694–700. doi:10.1093/jnci/djt045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Pepe MS, Etzioni R, Feng Z, Potter JD, Thompson ML, Thornquist M, Winget M, Yasui Y (2001) Phases of biomarker development for early detection of cancer. J Natl Cancer Inst 93(14):1054–1061

    Article  CAS  PubMed  Google Scholar 

  138. Dedeurwaerder S, Defrance M, Bizet M, Calonne E, Bontempi G, Fuks F (2013) A comprehensive overview of infinium HumanMethylation450 data processing. Brief Bioinform. doi:10.1093/bib/bbt054

    Google Scholar 

  139. Tavares-Murta BM, Mendonça MAO, Duarte NL, da Silva JA, Mutão TS, Garcia CB, Murta EFC (2010) Systemic leukocyte alterations are associated with invasive uterine cervical cancer. Int J Gynecol Cancer 20(7):1154–1159. 1110.1111/IGC.1150b1013e3181ef1158deb

    Article  PubMed  Google Scholar 

  140. Wu HC, Delgado-Cruzata L, Flom JD, Kappil M, Ferris JS, Liao Y, Santella RM, Terry MB (2011) Global methylation profiles in DNA from different blood cell types. Epigenetics: Off J DNA Methylation Soc 6(1):76–85. doi:10.4161/epi.6.1.13391

    Article  CAS  Google Scholar 

  141. Houseman E, Accomando W, Koestler D, Christensen B, Marsit C, Nelson H, Wiencke J, Kelsey K (2012) DNA methylation arrays as surrogate measures of cell mixture distribution. BMC Bioinform 13(1):86

    Article  Google Scholar 

  142. Koestler DC, Christensen BC, Karagas MR, Marsit CJ, Langevin SM, Kelsey KT, Wiencke JK, Houseman EA (2013) Blood-based profiles of DNA methylation predict the underlying distribution of cell types: a validation analysis. Epigenetics: Off J DNA Methylation Soc 8(8):816–826

    Article  CAS  Google Scholar 

  143. Bakulski KM, Fallin MD (2014) Epigenetic epidemiology: promises for public health research. Environ Mol Mutagenesis 55(3):171–183. doi:10.1002/em.21850

    Article  CAS  Google Scholar 

  144. Barault L, Ellsworth RE, Harris HR, Valente AL, Shriver CD, Michels KB (2013) Leukocyte DNA as surrogate for the evaluation of imprinted loci methylation in mammary tissue DNA. PLoS One 8(2):e55896. doi:10.1371/journal.pone.0055896

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Dumitrescu RG, Marian C, Krishnan SS, Spear SL, Kallakury BV, Perry DJ, Convit JR, Seillier-Moiseiwitsch F, Yang Y, Freudenheim JL, Shields PG (2010) Familial and racial determinants of tumour suppressor genes promoter hypermethylation in breast tissues from healthy women. J Cell Mol Med 14(6B):1468–1475. doi:10.1111/j.1582-4934.2009.00924.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Heidary M, Auer M, Ulz P, Heitzer E, Petru E, Gasch C, Riethdorf S, Mauermann O, Lafer I, Pristauz G, Lax S, Pantel K, Geigl J, Speicher M (2014) The dynamic range of circulating tumor DNA in metastatic breast cancer. Breast Cancer Res 16(4):421

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  147. Martin GM (2005) Epigenetic drift in aging identical twins. Proc Natl Acad Sci U S A 102(30):10413–10414. doi:10.1073/pnas.0504743102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. van der Vaart M, Pretorius PJ (2010) Is the role of circulating DNA as a biomarker of cancer being prematurely overrated? Clin Biochem 43(1–2):26–36. doi:http://dx.doi.org/10.1016/j.clinbiochem.2009.08.027

    Article  PubMed  CAS  Google Scholar 

  149. Sozzi G, Roz L, Conte D, Mariani L, Andriani F, Verderio P, Pastorino U (2005) Effects of prolonged storage of whole plasma or isolated plasma DNA on the results of circulating DNA quantification assays. J Natl Cancer Inst 97(24):1848–1850. doi:10.1093/jnci/dji432

    Article  CAS  PubMed  Google Scholar 

  150. Fisher B, Costantino JP, Wickerham DL, Redmond CK, Kavanah M, Cronin WM, Vogel V, Robidoux A, Dimitrov N, Atkins J, Daly M, Wieand S, Tan-Chiu E, Ford L, Wolmark N, Breast oNSA, Investigators BP (1998) Tamoxifen for prevention of breast cancer: report of the national surgical adjuvant breast and bowel project P-1 study. J Natl Cancer Inst 90(18):1371–1388. doi:10.1093/jnci/90.18.1371

    Article  CAS  PubMed  Google Scholar 

  151. Vogel VG, Costantino JP, Wickerham D et al (2006) Effects of tamoxifen vs raloxifene on the risk of developing invasive breast cancer and other disease outcomes: the NSABP study of tamoxifen and raloxifene (star) p-2 trial. J Am Med Assoc 295(23):2727–2741. doi:10.1001/jama.295.23.joc60074

    Article  CAS  Google Scholar 

  152. Smith RA, Cokkinides V, Brooks D, Saslow D, Shah M, Brawley OW (2011) Cancer screening in the United States, 2011. CA: Cancer J Clin 61(1):8–30. doi:10.3322/caac.20096

    Google Scholar 

  153. Gail MH, Brinton LA, Byar DP, Corle DK, Green SB, Schairer C, Mulvihill JJ (1989) Projecting individualized probabilities of developing breast cancer for white females who are being examined annually. J Natl Cancer Inst 81(24):1879–1886. doi:10.1093/jnci/81.24.1879

    Article  CAS  PubMed  Google Scholar 

  154. Antoniou AC, Pharoah PPD, Smith P, Easton DF (2004) The BOADICEA model of genetic susceptibility to breast and ovarian cancer. Br J Cancer 91(8):1580–1590

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Anothaisintawee T, Teerawattananon Y, Wiratkapun C, Kasamesup V, Thakkinstian A (2012) Risk prediction models of breast cancer: a systematic review of model performances. Breast Cancer Res Treat 133(1):1–10. doi:10.1007/s10549-011-1853-z

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mary Beth Terry .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Breast Cancer Research Foundation

About this chapter

Cite this chapter

Terry, M., McDonald, J., Wu, H., Eng, S., Santella, R. (2016). Epigenetic Biomarkers of Breast Cancer Risk: Across the Breast Cancer Prevention Continuum. In: Stearns, V. (eds) Novel Biomarkers in the Continuum of Breast Cancer. Advances in Experimental Medicine and Biology(), vol 882. Springer, Cham. https://doi.org/10.1007/978-3-319-22909-6_2

Download citation

Publish with us

Policies and ethics