Advertisement

KKM-Maps

  • Andrzej Granas
Chapter
  • 823 Downloads

Abstract

Let E be a real vector space and \(X \subset E\) be an arbitrary subset.

Keywords

Variational Inequality Convex Subset Fixed Point Theorem Fixed Point Theory Real Vector Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 2.
    H. Brezis, L. Nirenberg, G. Stampacchia, A remark on Ky Fan’s minimax principle, Boll. Unione Mat. Ital. (4) 6 (1972), 293–300.Google Scholar
  2. 3.
    F.E. Browder, The fixed point theory of multi-valued mappings in topological vector spaces, Math. Ann. 177 (1968), 283–301.MathSciNetCrossRefzbMATHGoogle Scholar
  3. 4.
    F.E. Browder, On a sharpened form of the Schauder fixed-point theorem, Proc. Natl. Acad. Sci. USA, 74 (1977) 4749–4751.MathSciNetCrossRefzbMATHGoogle Scholar
  4. 5.
    J. Dugundji, A. Granas, KKM-maps and variational inequalities, Ann. Scu. Norm. di Pisa, V (1978), 69–682.Google Scholar
  5. 6.
    J. Dugundji, A. Granas, Fixed point theory, Vol. I, Monografie Matematyczne 61, Warszawa, 1982. Springer Monographs in Mathematics, Springer-Verlag, New York, 1982.Google Scholar
  6. 7.
    K. Fan, A generalization of Tychonoff’s fixed point theorem, Math. Ann. 142 (1961), 305–310.MathSciNetCrossRefzbMATHGoogle Scholar
  7. 8.
    K. Fan, Sur un theoreme minimax, C.R. Acad. Sci. Paris, Groupe 1, 259 (1962), 3925–3928.Google Scholar
  8. 9.
    K. Fan, Applications of a theorem concerning sets with convex sections, Math. Ann. 163 (1966), 189–203.MathSciNetCrossRefzbMATHGoogle Scholar
  9. 10.
    K. Fan, Extensions of two fixed point theorems of F.E. Browder, Math. Z. 112 (1969), 234–240.Google Scholar
  10. 11.
    K. Fan, A minimax inequality and applications, in O. Shisha, ed., Inequalities III, Academic Press, New York and London, 1972, 103–113.Google Scholar
  11. 12.
    K. Fan, Fixed point and related theorems for non-compact convex sets. Game theory and related topics (Proc. Sem, Bonn and Hagen, 1978), pp. 151–156, North Holland, New York, 1979.Google Scholar
  12. 13.
    A. Granas, Points fixes pour les applications compactes: Espaces de Lefschetz et la théorie de l’indice. Cours professe pendant la session du Seminaire de Mathematiques Superieures a l’Université de Montreal (1973), Presses de l’Université de Montreal, 1980.Google Scholar
  13. 14.
    A. Granas, Sur la methode de continuité de Poincare, C.R. Acad. Sci. Paris 200 (1976), 983–985.Google Scholar
  14. 15.
    P. Hartman, G. Stampacchia, On some non-linear elliptic differential equations, Acta Math. 115 (1966), 271–310.MathSciNetCrossRefzbMATHGoogle Scholar
  15. 16.
    M. Hukuhara, Sur l’existence des points invariants d’une transformation dans l’espace fonctionnel, Jap. J. Math. 20 (1950), 1–4.MathSciNetzbMATHGoogle Scholar
  16. 17.
    I.S. Iokhvidov, On a lemma of Ky Fan generalizing the fixed-point principle of A.N. Tikhonov (Russian), Dokl. Akad. Nauk SSSR 159 (1964), 501–504. English transl.: Soviet Math. Dokl. 5 (1964), 1523–1526.Google Scholar
  17. 18.
    V. Klee, Leray-Schauder theory without local convexity, Math. Ann. 141 (1960), 286–296.MathSciNetCrossRefzbMATHGoogle Scholar
  18. 19.
    B. Knaster, C. Kuratowski, S. Mazurkiewicz, Ein Beweis des Fixpunktsatzes für n-dimensionale Simplexe, Fund. Math. 14 (1929), 132–137.zbMATHGoogle Scholar
  19. 20.
    M. Lassonde, Multiapplications KKM en analyse non lineaire, These Ph.D. Math., Univ. de Montreal (1978).Google Scholar
  20. 21.
    S. Mazur, Un theoreme sur les points invariants, Ann. Soc. Polon. Math. XVII (1938), 110.Google Scholar
  21. 22.
    S. Mazur, J. Schauder, Über ein Prinzip in der Variationsrechnung, Proc. Int. Congress Math., Oslo (1936), 65.Google Scholar
  22. 23.
    U. Mosco, Implicit variational problems and quasi variational inequalities, in Lecture Notes in Mathematics, 543: Non-linear operators and the calculus of variations, Bruxelles (1975), Springer-Verlag, Berlin-Heidelberg-New York (1976), 83–156.Google Scholar
  23. 24.
    J. Nash, Non-cooperative games, Ann. of Math. 54 (1951), 286–295.MathSciNetCrossRefzbMATHGoogle Scholar
  24. 25.
    J.V. Neumann, Ueber ein okonomisches Gleichungssystem und eine Verallgemeinerung des Brouwerschen Fixpunktsatzes, Ergebnisse eines Mathematischen Kolloquiums 8 (1935), 73–83.Google Scholar
  25. 26.
    O. Nikodym, Sur le principe de minimum dans le probleme de Dirichlet, Ann. Soc. Polon. Math. X (1931), 120–121.Google Scholar
  26. 27.
    T. Riedrich, Vorlesungen über nichtlineare Operator-gleichungen, Teubner-Texte, Teubner-Verlag, Leipzig (1975).Google Scholar
  27. 29.
    M. Sion, On general minimax theorems, Pacific J. Math. 8 (1958), 171–176.MathSciNetCrossRefzbMATHGoogle Scholar
  28. 30.
    G. Stampacchia, Variational inequalities, Summer School on theory and applications of monotone operators, Venice, (1968).zbMATHGoogle Scholar
  29. 31.
    A. Tychonoff, Ein Fixpunktsatz, Math. Ann. 111 (1935), 767–776.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Andrzej Granas
    • 1
  1. 1.MontréalCanada

Personalised recommendations