Skip to main content

Effects of Hydrogen-Bonding on the Liquid Crystalline Properties of Dendritic Polymers

  • Chapter
Liquid Crystalline Polymers

Abstract

A brief survey of the research on the role of intra and intermolecular hydrogen bonding on the liquid crystalline properties of dendritic polymers is presented. Cases where liquid crystalline character is attributed mainly (or perhaps exclusively) on hydrogen bonding are reported and classified. In addition a review on the variation of organization of such molecules as a function of temperature due to the presence of different types of hydrogen bonds is included. Some general conclusions and rules are suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adronov A, Frechet JMJ (2000) Light-harvesting dendrimers. Chem Commun 18:1701–1710

    Article  Google Scholar 

  • Allabashi R, Arkas M, Hörmann G, Tsiourvas D (2007) Removal of some organic pollutants in water employing ceramic membranes impregnated with cross-linked silylated dendritic and cyclodextrin polymers. Water Res 41(2):476–486

    Article  Google Scholar 

  • Anokhin DV, Lejnieks J, Mourran A, Zhu X, Keul H, Möller M, Konovalov O, Erina N, Ivanov DA (2012) Interplay between H-bonding and alkyl-chain ordering in self-assembly of monodendritic L-alanine derivatives. Chemphyschem 13:1470–1478

    Article  Google Scholar 

  • Arkas M (2013) Hybrid organoceramics deriving from dendritic polymers, methods of preparation, optimization techniques and prospected applications. Recent advances in ceramic materials research. New York, Nova Science, pp 1–30

    Google Scholar 

  • Arkas M, Tsiourvas D (2009) Organic/inorganic hybrid nanospheres based on hyperbranched poly(ethylene imine) encapsulated into silica for the sorption of toxic metal ions and polycyclic aromatic hydrocarbons from water. J Hazard Mater 170(1):35–42

    Article  Google Scholar 

  • Arkas M, Tsiourvas D, Paleos CM (2003) Functional dendrimeric “nanosponges” for the removal of polycyclic aromatic hydrocarbons from water. Chem Mater 15:2844–2847

    Article  Google Scholar 

  • Arkas M, Eleades L, Paleos CM, Tsiourvas D (2005a) Alkylated hyperbranched polymers as molecular nanosponges for the purification of water from polycyclic aromatic hydrocarbons. J Appl Polym Sci 97(6):2299–2305

    Article  Google Scholar 

  • Arkas M, Tsiourvas D, Paleos CM (2005b) Organosilicon dendritic networks in porous ceramics for water purification. Chem Mater 17(13):3439–3444

    Article  Google Scholar 

  • Arkas M, Allabashi R, Tsiourvas D, Mattausch E-M, Perfler R (2006) Organic/inorganic hybrid filters based on dendritic and cyclodextrin “nanosponges” for the removal of organic pollutants from water. Environ Sci Technol 40(8):2771–2777

    Article  Google Scholar 

  • Arkas M, Tsiourvas D, Paleos CM (2010) Functional dendritic polymers for the development of hybrid materials for water purification macromol. Macromol Mater Eng 295(10):883–898

    Article  Google Scholar 

  • Balagurusamy VSK, Ungar G, Percec V, Johansson G (1997) Rational design of the first spherical supramolecular dendrimers self-organized in a novel thermotropic cubic liquid-crystalline phase and the determination of their shape by X-ray analysis. J Am Chem Soc 119:1539–1555

    Article  Google Scholar 

  • Barberá J, Marcos M, Serrano JL (1999) Dendromesogens: liquid crystal organizations versus starburst structures. Chem Eur J 5:1834–1840

    Article  Google Scholar 

  • Barberá J, Donnio B, Gehringer L, Guillon D, Marcos M, Omenat A, Serrano JL (2005) Self-organization of nanostructured functional dendrimers. J Mater Chem 15:4093–4105

    Article  Google Scholar 

  • Barberá J, Jiménez J, Laguna A, Oriol L, Pérez S, Serrano JL (2006) Cyclotriphosphazene as a dendritic core for the preparation of columnar supermolecular liquid crystals. Chem Mater 18:5437–5445

    Article  Google Scholar 

  • Bergenudd H, Eriksson P, De Armitt C, Stenberg B, Malmström Jonsson E (2002) Synthesis and evaluation of hyperbranched phenolic antioxidants of three different generations. Polym Degrad Stab 76:503–508

    Article  Google Scholar 

  • Brewis M, Clarkson GJ (1998) Phthalocyanines substituted with dendritic wedges: glass-forming columnar mesogens. Chem Commun 9:969–970

    Article  Google Scholar 

  • Burkinshaw SM, Froehling PE, Mignanelli M (2002) The effect of hyperbranched polymers on the dyeing of polypropylene fibres. Dyes Pigm 53:229–235

    Article  Google Scholar 

  • Bury I, Heinrich B, Bourgogne C, Guillon D, Donnio B (2006) Supramolecular self-organization of “Janus-like” diblock codendrimers: synthesis, thermal behavior, and phase structure modeling. Chem Eur J 12:8396–8413

    Article  Google Scholar 

  • Caminade AM, Turrin CO, Sutra P, Majoral JP (2003) Fluorinated dendrimers. Curr Opin Colloid Interface Sci 8:282–295

    Article  Google Scholar 

  • Castelar S, Barberá J, Marcos M, Romero P, Serrano JL, Golemme A, Termine R (2013) Supramolecular dendrimers based on the self-assembly of carbazole-derived dendrons and triazine rings: liquid crystal, photophysical and electrochemical properties. J Mater Chem C 1:7321–7332

    Article  Google Scholar 

  • Didehban K, Namazi H, Entezami AA (2009) Dendrimer-based hydrogen-bonded liquid crystalline complexes: synthesis and characterization. Eur Polym J 45:1836–1844

    Article  Google Scholar 

  • Didehban K, Namazi H, Entezami AA (2010) Non-covalent dendrimer-based liquid crystalline complexes: synthesis and characterization. Eur Polym J 46:1923–1931

    Article  Google Scholar 

  • Diele S (2002) Curr Opin Colloid Interface Sci 7:333–342

    Article  Google Scholar 

  • Donnio B, Barberá J, Giménez R, Guillion D, Marcos M, Serrano JL (2002) Controlled molecular conformation and morphology in poly(amidoamine) (PAMAM) and poly(propyleneimine) (DAB) dendrimers. Macromolecules 35:370–381

    Article  Google Scholar 

  • Donnio B, Buathong S, Bury I, Guillon D (2007) Liquid crystalline dendrimers. Chem Soc Rev 36:1495–1513

    Article  Google Scholar 

  • Emrick T, Fréchet JMJ (1999) Erratum to ‘self-assembly of dendritic structures’. Curr Opin Colloid Interface Sci 4:15–23

    Article  Google Scholar 

  • Felekis T, Tsiourvas D, Tziveleka L, Paleos CM (2005) Hydrogen-bonded liquid crystals derived from supramolecular complexes of pyridylated poly(propyleneimine) dendrimers and a cholesterol-based carboxylic acid. Liq Cryst 32:39–43

    Article  Google Scholar 

  • Fischer M, Vögtle F (1999) Dendrimers: from design to application—a progress report. Angew Chem Int Ed 38:884–905

    Article  Google Scholar 

  • Fitié CFC, Tomatsu I, Byelov D, de Jeu WH, Sijbesma RP (2008) Nanostructured materials through orthogonal self-assembly in a columnar liquid crystal. Chem Mater 20:2394–2404

    Article  Google Scholar 

  • Gao B, Xia D, Zhang L, Bai Q, Bai L, Yang T, Ba X (2011) Helical columnar liquid crystals based on dendritic peptides substituted perylene bisimides. J Mater Chem 21:15975–15980

    Article  Google Scholar 

  • Gehringer L, Bourgogne C, Guillon D, Donnio B (2005) Main-chain liquid-crystalline dendrimers based on amido-core moieties—effect of the core structure. J Mater Chem 15:1696–1703

    Article  Google Scholar 

  • Grayson SM, Fréchet JMJ (2001) Convergent dendrons and dendrimers: from synthesis to applications. Chem Rev 101:3819–3868

    Article  Google Scholar 

  • Guillon D, Deschenaux R (2002) Liquid-crystalline dendrimers. Curr Opin Solid State Mater Sci 6:515–525

    Article  Google Scholar 

  • Hudson SD, Jung HT, Percec V, Cho WD, Johansson G, Ungar G, Balagurusamy VSK (1997) Direct visualization of individual cylindrical and spherical supramolecular dendrimers. Science 278:449–452

    Article  Google Scholar 

  • Inoue K (2000) Functional dendrimers, hyperbranched and star polymers. Prog Polym Sci 25:453–571

    Article  Google Scholar 

  • Ishihara S, Furuki Y, Takeoka S (2007) A hydrogen-bonded supramolecular hexagonal columnar liquid crystal composed of a tricarboxylic triphenylene and monopyridyl dendrons. Chem Lett 16(5):441–451

    Google Scholar 

  • Ishihara S, Furuki Y, Hill JP, Ariga K, Takeoka S (2014) Homeotropic alignment of dendritic columnar liquid crystal induced by hydrogen-bonded triphenylene core bearing fluoroalkyl chains. J Nanosci Nanotechnol 14(7):5130–5137

    Article  Google Scholar 

  • Johansson G, Percec V, Ungar G, Abramic DJ (1994) Molecular recognition directed self-assembly of tubular liquid crystalline and crystalline supramolecular architectures from taper shaped (15-crown-5)methyl 3,4,5-tris(p-alkyloxybenzyloxy)benzoates and (15-crown-5)methyl 3,4,5-tris(p-dodecyloxy)benzoate. J Chem Soc Perkin Trans 1:447–459

    Article  Google Scholar 

  • Johansson G, Percec V, Ungar G, Zhou JP (1996) Fluorophobic effect in the self-assembly of polymers and model compounds containing tapered groups into supramolecular columns. Macromolecules 29:646–656

    Article  Google Scholar 

  • Kamikawa Y, Kato T (2006) One-dimensional chiral self-assembly of pyrene derivatives based on dendritic oligopeptides. Org Lett 8:2463–2466

    Article  Google Scholar 

  • Kamikawa Y, Nishii M, Kato T (2004) Self-assembly of folic acid derivatives: induction of supramolecular chirality by hierarchical chiral structures. Chem Eur J 10:5942–5951

    Article  Google Scholar 

  • Kamikawa Y, Nishii M, Kato T (2005) Supramolecular chiral cubic phases formed by folic acid derivatives. Mol Cryst Liq Cryst 435:755–765

    Article  Google Scholar 

  • Kamikawa Y, Fujimoto N, Donnio B, Guillon D, Kato T (2010) Self-assembled structures of liquid-crystalline oligopeptide dimmers. Mol Cryst Liq Cryst 516:132–143

    Article  Google Scholar 

  • Kanie K, Nishii M, Yasuda T, Taki T, Ujiieb S, Kato T (2001a) Self-assembly of thermotropic liquid-crystalline folic acid derivatives: hydrogen-bonded complexes forming layers and columns. J Mater Chem 11:2875–2886

    Article  Google Scholar 

  • Kanie K, Yasuda T, Nishii M, Ujiie S, Kato T (2001b) Hydrogen-bonded lyotropic liquid crystals of folic acids: responses to environment by exhibiting different complex patterns. Chem Lett 30:480–481

    Article  Google Scholar 

  • Kato T, Matsuoka T, Nishii M, Kamikawa Y, Kanie K, Nishimura T, Yashima E, Ujiie S (2004) Supramolecular chirality of thermotropic liquid-crystalline folic acid derivatives. Angew Chem Int Ed 43:1969–1972

    Article  Google Scholar 

  • Kolhe P, Misra E, Kannan RM, Kannan S, Lieh-Lai M (2003) Drug complexation, in vitro release and cellular entry of dendrimers and hyperbranched polymers. Int J Pharm 259:143–160

    Article  Google Scholar 

  • Kraft A, Reichert A, Kleppinger R (2000) Supramolecular liquid crystals with columnar mesophases through self-assembly of carboxylic acids around a tribasic core. Chem Commun 12:1015–1016

    Article  Google Scholar 

  • Lee H-K, Lee H, Ko YH, Chang YJ, Oh N-K, Zin W-C, Kim K (2001) Synthesis of a nanoporous polymer with hexagonal channels from supramolecular discotic liquid crystals. Angew Chem Int Ed 40:2669–2671

    Article  Google Scholar 

  • Lee CC, MacKay JA, Fréchet JMJ, Szoka FC (2005) Designing dendrimers for biological applications. Nat Biotechnol 23:1517–26

    Article  Google Scholar 

  • Lehmann M, Köhn C, Meier H, Renkerb S, Oehlhofb A (2005) Supramolecular order of stilbenoid dendrons: importance of weak interactions. J Mater Chem 16:441–451

    Article  Google Scholar 

  • Marcos M, Giménez R, Serrano JL, Donnio B, Heinrich B, Guillon D (2001) Dendromesogens: liquid crystal organisations versus starburst structures. Chem Eur J 7:1006–1013

    Article  Google Scholar 

  • Matheus OA, Shipway AN, Stoddart JF (1998) Dendrimers—branching out from curiosities into new technologies. Prog Polym Sci 23:1–56

    Article  Google Scholar 

  • Meier H, Lehmann M (1998) Stilbenoid dendrimers. Angew Chem Int Ed Engl 37:643–645

    Article  Google Scholar 

  • Moore JS (1999) Supramolecular polymers. Curr Opin Colloid Interface Sci 4:108–116

    Article  Google Scholar 

  • Percec V, Schlueter D (1997) Mechanistic investigations on the formation of supramolecular cylindrical shaped oligomers and polymers by living ring opening metathesis polymerization of a 7-oxanorbornene monomer substituted with two tapered monodendrons. Macromolecules 30:5783–5790

    Article  Google Scholar 

  • Percec V, Heck J, Lee M, Ungar G, Alvarez-Castillo A (1992) Poly{2-vinyloxyethyl 3,4,5-tris[4-(n-dodecanyloxy)benzyloxy]benzoate}: a self-assembled supramolecular polymer similar to tobacco mosaic virus. Mater Chem 2:1033–1039

    Article  Google Scholar 

  • Percec V, Heck J, Tomazos D, Falkenberg F, Blackwell H, Ungar G (1993a) Self-assembly of taper-shaped monoesters of oligo(ethylene oxide) with 3,4,5-tris(p-dodecyloxybenzyloxy)benzoic acid and of their polymethacrylates into tubular supramolecular architectures displaying a columnar mesophase. J Chem Soc Perkin Trans 1:2799–2811

    Article  Google Scholar 

  • Percec V, Heck JA, Tomazos D, Ungar G (1993b) The influence of the complexation of sodium and lithium triflate on the self-assembly of tubular-supramolecular architectures displaying a columnar mesophase based on taper-shaped monoesters of oligoethylene oxide with 3,4,5-tris[p-(n-dodecan-1-yloxy)benzyloxy]benzoic acid and of their polymethacrylates. J Chem Soc Perkin Trans 2:2381–2388

    Article  Google Scholar 

  • Percec V, Johansson G, Heck J, Ungar G, Batty SV (1993c) Molecular recognition directed self-assembly of supramolecular cylindrical channel-like architectures from 6,7,9,10,12,13,15,16-octahydro-1,4,7,10,13-pentaoxabenzocyclopentadecen-2-ylmethyl 3,4,5-tris(p-dodecyloxybenzyloxy)benzoate. J Chem Soc Perkin Trans 1:1411–1420

    Article  Google Scholar 

  • Percec V, Tomazos D, Heck J, Blackwell H, Ungar G (1994) Self-assembly of taper-shaped monoesters of oligo(ethylene oxide) with 3,4,5-tris(n-dodecan-1-yloxy)benzoic acid and of their polymethacrylates into tubular supramolecular architectures displaying a columnar hexagonal mesophase. J Chem Soc Perkin Trans 2:31–44

    Article  Google Scholar 

  • Percec V, Schlueter D, Kwon YK, Blackwell J, Moller M, Slangen PJ (1995) Dramatic stabilization of a hexagonal columnar mesophase generated from supramolecular and macromolecular columns by the semifluorination of the alkyl groups of their tapered building blocks. Macromolecules 28:8807–8818

    Article  Google Scholar 

  • Percec V, Johansson G, Ungar G, Zhou J (1996a) Fluorophobic effect induces the self-assembly of semifluorinated tapered monodendrons containing crown ethers into supramolecular columnar dendrimers which exhibit a homeotropic hexagonal columnar liquid crystalline phase. J Am Chem Soc 118:9855–9866

    Article  Google Scholar 

  • Percec V, Schlueter D, Ronda JC, Johansson G, Ungar G, Zhou JP (1996b) Tubular architectures from polymers with tapered side groups. assembly of side groups via a rigid helical chain conformation and flexible helical chain conformation induced via assembly of side groups. Macromolecules 29:1464–1472

    Article  Google Scholar 

  • Percec V, Ahn CH, Cho WD, Jamieson AM, Kim J, Leman T, Schmidt M, Gerle M, Möller M, Percec V, Ahn CH, Ungar G, Yeardley DJP, Moller M, Sheiko SS (1998a) Controlling polymer shape through the self-assembly of dendritic side-groups. Nature 391:161–164

    Article  Google Scholar 

  • Percec V, Cho WD, Mosier PE, Ungar G, Yeardley DJP (1998b) Structural analysis of cylindrical and spherical supramolecular dendrimers quantifies the concept of monodendron shape control by generation number. J Am Chem Soc 120:11061–11070

    Article  Google Scholar 

  • Percec V, Schlueter D, Ungar G, Cheng SZD, Zhang A (1998c) Hierarchical control of internal superstructure, diameter, and stability of supramolecular and macromolecular columns generated from tapered monodendritic building blocks. Macromolecules 31:1745–1762

    Article  Google Scholar 

  • Percec V, Ahn CH, Bera TK, Ungar G, Yeardley DJP (1999) Coassembly of a hexagonal columnar liquid crystalline superlattice from polymer(s) coated with a three-cylindrical bundle supramolecular dendrimer. Chem Eur J 5:1070–1083

    Article  Google Scholar 

  • Percec V, Bera TK, Glodde M, Fu Q, Balagurusamy VSK, Heiney PA (2003) Hierarchical self-assembly, coassembly, and self-organization of novel liquid crystalline lattices and superlattices from a twin-tapered dendritic benzamide and its four-cylinder-bundle supramolecular polymer. Chem Eur J 9:921–935

    Article  Google Scholar 

  • Percec V, Peterca M, Dulcey AE, Imam MR, Hudson SD, Nummelin ASP, Heiney PA (2008) Hollow spherical supramolecular dendrimers. J Am Chem Soc 130:13079–13094

    Article  Google Scholar 

  • Percec V, Peterca M, Tsuda Y, Rosen BM, Uchida S, Imam MR, Ungar G, Heiney PA (2009) Elucidating the structure of the Pm3n cubic phase of supramolecular dendrimers through the modification of their aliphatic to aromatic volume ratio Chem. Eur J 15:8994–9004

    Article  Google Scholar 

  • Pesak D, Moore JS (1997) Columnar liquid crystals from shape-persistent dendritic molecules. Angew Chem Int Ed Engl 36:1636–1639

    Article  Google Scholar 

  • Ponomarenco SA, Boiko NI, Shibaev VP (2001) Liquid-crystalline dendrimers. Polym Sci Ser C 43:1–45

    Google Scholar 

  • Precup-Blaga FS, Schenning APHJ, Meijer EW (2003) Liquid crystalline oligo(p-phenylene vinylene)-terminated poly(propylene imine) dendrimers. Synthesis and characterization. Macromolecules 36:565–572

    Article  Google Scholar 

  • Prokhorova SA, Sheiko SS, Cheng SZD, Zhang A, Ungar G, Yeardley DJP (1998a) Visualizable cylindrical macromolecules with controlled stiffness from backbones containing libraries of self-assembling dendritic side groups. J Am Chem Soc 120:8619–8631

    Article  Google Scholar 

  • Prokhorova SA, Sheiko SS, Moller M, Ahn CH, Percec V (1998b) Molecular imaging of monodendron jacketed linear polymers by scanning force microscopy. Macromol Rapid Commun 19:359–366

    Article  Google Scholar 

  • Prokhorova SA, Sheiko SS, Ahn CH, Percec V, Moller M (1999) Molecular conformations of monodendron-jacketed polymers by scanning force microscopy. Macromolecules 32:2653–2660

    Article  Google Scholar 

  • Sagara Y, Kato T (2008) Stimuli-responsive luminescent liquid crystals: change of photoluminescent colors triggered by a shear-induced phase transition. Angew Chem Int Ed 47:5175–5178

    Article  Google Scholar 

  • Sagara Y, Kato T (2011a) A mechanical and thermal responsive luminescent liquid crystal forming a colourless film under room light. Supramol Chem 23:310–314

    Article  Google Scholar 

  • Sagara Y, Kato T (2011b) Brightly tricolored mechanochromic luminescence from a single-luminophore liquid crystal: Reversible writing and erasing of images. Angew Chem Int Ed 50:9128–9132

    Article  Google Scholar 

  • Sagara BY, Yamane S, Mutai T, Araki K, Kato T (2009) A stimuli-responsive, photoluminescent, anthracene-based liquid crystal: emission color determined by thermal and mechanical processes. Adv Funct Mater 19:1869–1875

    Article  Google Scholar 

  • Schlenk C, Frey H (1999) Carbosilane dendrimers—synthesis, functionalization, application. Monatsh Chem 130:3–14

    Google Scholar 

  • Seiler M, Köhler D, Arlt W (2003) Hyperbranched polymers: new selective solvents for extractive distillation and solvent extraction. Sep Purif Technol 30:179–197

    Article  Google Scholar 

  • Shu J, Dudenko D, Esmaeili M, Park JH, Puniredd SR, Chang JY, Breiby DW, Pisula W, Hansen MR (2013) Coexistence of helical morphologies in columnar stacks of star-shaped discotic hydrazones. J Am Chem Soc 135:11075–11086

    Article  Google Scholar 

  • Smith DK, Diederich F (2000) Supramolecular dendrimer chemistry: a journey through the branched architecture. Top Curr Chem 210:183–227

    Article  Google Scholar 

  • Stebani U, Lattermann G (1995) Unconventional mesogens of hyperbranched amides and corresponding ammonium derivatives. Adv Mater 7:578–581

    Article  Google Scholar 

  • Suárez M, Lehn JM, Zimmerman SC, Skoulios A, Heinrich B (1998) Supramolecular liquid crystals. self-assembly of a trimeric supramolecular disk and its self-organization into a columnar discotic mesophase. J Am Chem Soc 120:9526–9532

    Article  Google Scholar 

  • Sun Q, Xu K, Jacky W, Lam Y, Cha JAK, Zhang X et al (2001) Nanostructured magnetoceramics from hyperbranched polymer precursors. Mater Sci Eng C 16:107–112

    Article  Google Scholar 

  • Tschierske C (2001) Micro-segregation, molecular shape and molecular topology—partners for the design of liquid crystalline materials with complex mesophase morphologies. J Mater Chem 11:2647–2671

    Article  Google Scholar 

  • Tschierske C (2002) Liquid crystalline materials with complex mesophase morphologies. Curr Opin Colloid Interface Sci 7:69–80

    Article  Google Scholar 

  • Tsetsekou A, Arkas M, Kritikaki A, Simonetis S, Tsiourvas D (2008) Optimization of hybrid hyperbranched polymer/ceramic filters for the efficient absorption of polyaromatic hydrocarbons from water. J Membrane Sci 311(1-2):128–135

    Article  Google Scholar 

  • Tsiourvas D, Arkas M (2013) Columnar and smectic self-assembly deriving from non ionic amphiphilic hyperbranched polyethylene imine polymers and induced by hydrogen bonding and segregation into polar and non polar parts. Polymer 54:1114–1122

    Article  Google Scholar 

  • Tsiourvas D, Tsetsekou A, Arkas M, Diplas S, Mastrogianni E (2011) Covalent attachment of a bioactive hyperbranched polymeric layer to titanium surface for the biomimetic growth of calcium phosphates. J Mater Sci Mater Med 22(1):85–96

    Article  Google Scholar 

  • Tsiourvas D, Arkas M, Paleos CM (2013a) Organic/inorganic hybrid materials based on functional dendrimers and hyperbranched polymers for water purification. Water treatment processes. Nova Science, New York, pp 334–355

    Google Scholar 

  • Tsiourvas D, Tsetsekou A, Papavasiliou A, Arkas M, Boukos N (2013b) A novel hybrid sol-gel method for the synthesis of highly porous silica employing hyperbranched poly(ethyleneimine) as a reactive template. Micropor Mesopor 175:59–66

    Article  Google Scholar 

  • Xu J, Ling TC, He C (2008) Hydrogen bond-directed self-assembly of peripherally modified cyclotriphosphazenes with a homeotropic liquid crystalline phase. J Polym Sci A Polym Chem 46:4691–4703

    Article  Google Scholar 

  • Yamane S, Tanabe K, Sagara Y, Kato T (2012) Stimuli-responsive photoluminescent liquid crystals. Top Curr Chem 318:395–406

    Article  Google Scholar 

  • Yin R, Zhu Y, Tomalia DA, Ibuki H (1998) Architectural copolymers: rod-shaped, cylindrical dendrimers. J Am Chem Soc 120:2678–2679

    Article  Google Scholar 

  • Zhou Y, Xu M, Li T, Guo Y, Ya T, Xiao S, Li F, Huang C (2008) Stabilization of the mesomorphic phase in a self-assembled two-component system. J Colloid Interface Sci 321:205–211

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aggeliki Papavasiliou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Arkas, M., Papavasiliou, A. (2016). Effects of Hydrogen-Bonding on the Liquid Crystalline Properties of Dendritic Polymers. In: Thakur, V., Kessler, M. (eds) Liquid Crystalline Polymers. Springer, Cham. https://doi.org/10.1007/978-3-319-22894-5_6

Download citation

Publish with us

Policies and ethics