Skip to main content

Liquid Crystalline Epoxy Resins

  • Chapter
Liquid Crystalline Polymers

Abstract

The idea of developing crosslinked liquid crystalline (LC) networks was proposed by Nobel laureate, Pierre-Gilles de Gennes in 1969 (Gennes and Prost 1995). Subsequent efforts in this area resulted in a group of materials known as liquid crystalline thermosets (LCTs), which combines the outstanding properties of both liquid crystals and crosslinked thermosets (Shiota and Ober 1997a; Douglas 2002; Barclay and Ober 1993). A great number of LCTs have been synthesized using a variety of monomers, including epoxy (Carfagna et al. 1997; Giamberini et al. 1995; Mallon and Adams 1993), acrylate (Hikmet and Broer 1991; Hikmet et al. 1992; Litt et al. 1993; Holter et al. 1996), maleimide (Hoyt and Benicewicz 1990a, b), and cyanate ester (Mormann and Zimmermann 1995, 1996; Barclay et al. 1992a; Mormann and Kuckertz 1998). These materials exhibit properties that transcend their amorphous counterparts because of a polydomain structure. Among all the LCTs synthesized, liquid crystalline epoxy resins (LCERs) have received the most attention because of their diverse applications, such as microelectronics packaging materials, optical wave guides, adhesives, color filters, and structural materials. LCERs are generally formed upon curing of low molecular weight, rigid rod epoxy monomers with amines or anhydrides, resulting in the retention of a LC phase by the three dimensional crosslinking networks. Early investigation of LCERs focused on molecular architecture of the epoxy monomers and the related LC phase transition. Subsequent work involves studies on cure kinetics, phase evolution, molecular orientation and thermomechanical characterization of the LCERs. More recently, there have been efforts on fabrication of composites and nanocomposites using LCERs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Amendola E, Carfagna C, Giamberini M, Pisaniello G (1995) Curing reactions of a liquid crystalline epoxy resins based on the diglycidyl ether of 4,4′-dihydroxy-alpha-methylstilbene. Macromol Chem Phys 196(5):1577–1591

    Article  Google Scholar 

  • Barclay GG, Ober CK (1993) Liquid-crystalline and rigid-rod networks. Prog Polym Sci 18(5):899–945

    Article  Google Scholar 

  • Barclay GG, Ober CK, Papathomas KI, Wang DW (1992a) Rigid-rod thermosets based on 1,3,5-triazine-linkd aromatic ester segments. Macromolecules 25(11):2947–2954

    Article  Google Scholar 

  • Barclay GG, Ober CK, Papathomas KI, Wang DW (1992b) Liquid crystalline epoxy thermosets based on dihydroxymethylstilbene—synthesis and characterization. J Polym Sci A Polym Chem 30(9):1831–1843

    Article  Google Scholar 

  • Benicewicz BC, Smith ME, Earls JD, Priester RD, Setz SM, Duran RS, Douglas EP (1998) Magnetic field orientation of liquid crystalline epoxy thermosets. Macromolecules 31(15):4730–4738

    Article  Google Scholar 

  • Broer DJ, Mol GN (1991) Anisotropic thermal expansion of densely cross-linked oriented polymer networks. Polym Eng Sci 31(9):625–631

    Article  Google Scholar 

  • Broer DJ, Lub J, Mol GN (1993) Synthesis and photopolymerization of a liquid crystalline diepoxide. Macromolecules 26(6):1244–1247

    Article  Google Scholar 

  • Cai ZQ, Sun JZ, Wang DD, Zhou QY (2007) Studies on curing kinetics of a novel combined liquid crystalline epoxy containing tetramethylbiphenyl and aromatic ester-type mesogenic group with diaminodiphenylsulfone. J Polym Sci A Polym Chem 45(17):3922–3928

    Article  Google Scholar 

  • Carfagna C, Amendola E, Giamberini M, Filippov AG, Bauer RS (1993) Cureing kinetics of liquid crystalline epoxy resins. Liq Cryst 13(4):571–584

    Article  Google Scholar 

  • Carfagna C, Amendola E, Giamberini M (1997) Liquid crystalline epoxy based thermosetting polymers. Prog Polym Sci 22(8):1607–1647

    Article  Google Scholar 

  • Castell P, Serra A, Galia M, Giamberini M, Carfagna C (2003) Anisotropic thermosets from liquid-crystalline azomethynic epoxy resins and primary aromatic diamines. J Polym Sci A Polym Chem 41(1):1–12

    Article  Google Scholar 

  • Cho SH, Douglas EP (2002) Gelation and development of liquid crystalline order during cure of a rigid-rod epoxy. Macromolecules 35(11):4550–4552

    Article  Google Scholar 

  • Cho SH, Lee JY, Douglas EP, Lee JY (2006a) Synthesis and thermal properties of liquid crystalline thermoset containing rigid-rod epoxy. High Perform Polym 18(1):83–99

    Article  Google Scholar 

  • Cho S, Douglas EP, Lee JY (2006b) Transition diagrams for a liquid crystalline thermoset containing a rigid-rod epoxy. Polym Eng Sci 46(5):623–629

    Article  Google Scholar 

  • Choi EJ, Ahn HK, Lee JK, Jin JI (2000) Liquid crystalline twin epoxy monomers based on azomethine mesogen: synthesis and curing with aromatic diamines. Polymer 41(21):7617–7625

    Article  Google Scholar 

  • Douglas EP (2002) Liquid crystalline thermosets, Encyclopedia of polymer science and technology. Wiley, New York

    Book  Google Scholar 

  • Gao ZY, Yu YF, Xu YZ, Li SJ (2007) Synthesis and characterization of a liquid crystalline epoxy containing azomethine mesogen for modification of epoxy resin. J Appl Polym Sci 105(4):1861–1868

    Article  Google Scholar 

  • Gennes PGD, Prost J (1995) The physics of liquid crystals. Clarendon Press, Oxford

    Google Scholar 

  • Giamberini M, Amendola E, Carfagna C (1995) Liquid crystalline epoxy thermosets. Mol Cryst Liq Cryst Sci Technol A Mol Cryst Liq Cryst 266:9–22

    Article  Google Scholar 

  • Harada M, Ochi M, Tobita M, Kimura T, Ishigaki T, Shimoyama N, Aoki H (2003) Thermal-conductivity properties of liquid-crystalline epoxy resin cured under a magnetic field. J Polym Sci B Polym Phys 41(14):1739–1743

    Article  Google Scholar 

  • Harada M, Aoyama K, Ochi M (2004a) Fracture mechanism of liquid-crystalline epoxy resin system with different phase structures. J Polym Sci B Polym Phys 42(22):4044–4052

    Article  Google Scholar 

  • Harada M, Ochi M, Tobita M, Kimura T, Ishigaki T, Shimoyama N, Aoki H (2004b) Thermomechanical properties of liquid-crystalline epoxy networks arranged by a magnetic field. J Polym Sci B Polym Phys 42(5):758–765

    Article  Google Scholar 

  • Harada M, Watanabe Y, Tanaka Y, Ochi M (2006) Thermal properties and fracture toughness of a liquid-crystalline epoxy resin cured with an aromatic diamine crosslinker having a mesogenic group. J Polym Sci B Polym Phys 44(17):2486–2494

    Article  Google Scholar 

  • Harada M, Sumitomo K, Nishimoto Y, Ochi M (2009) Relationship between fracture toughness and domain size of liquid-crystalline epoxy resins having polydomain structure. J Polym Sci B Polym Phys 47(2):156–165

    Article  Google Scholar 

  • Harada M, Okamoto N, Ochi M (2010) Fracture toughness and fracture mechanism of liquid-crystalline epoxy resins with different polydomain structures. J Polym Sci B Polym Phys 48(22):2337–2345

    Article  Google Scholar 

  • Harada M, Ando J, Hattori S, Sakurai S, Sakamoto N, Yamasaki T, Masunaga H, Ochi M (2013) In-situ analysis of the structural formation process of liquid-crystalline epoxy thermosets by simultaneous SAXS/WAXS measurements using synchrotron radiation. Polymer Journal 45(1):43–49

    Article  Google Scholar 

  • Hikmet RAM, Broer DJ (1991) Dynamic mechanical properties of anisotropic networkers formed by liquid crystalline acrylates. Polymer 32(9):1627–1632

    Article  Google Scholar 

  • Hikmet RAM, Lub J, Vanderbrink PM (1992) Structure and mobility within anisotropic networks obtained by photopolymerization of liquid crystal molecules. Macromolecules 25(16):4194–4199

    Article  Google Scholar 

  • Holter D, Frey H, Mulhaupt R, Klee JE (1996) Liquid crystalline thermosets based on branched bismethacrylates. Macromolecules 29(22):7003–7011

    Article  Google Scholar 

  • Hoyt AE, Benicewicz BC (1990a) Rigid rod molecules as liquid crystal thermosets.1. rigid rod amides. J Polym Sci A Polym Chem 28(12):3403–3415

    Article  Google Scholar 

  • Hoyt AE, Benicewicz BC (1990b) Rigid rod molecules as liquid crystal thermosets. II. Rigid rod esters. J Polym Sci A Polym Chem 28(12):3417–3427

    Article  Google Scholar 

  • Jahromi S (1994) Liquid crystalline epoxide thermosets—a deuterium nuclear-magnetic-resonance study. Macromolecules 27(10):2804–2813

    Article  Google Scholar 

  • Jahromi S, Lub J, Mol GN (1994) Synthesis and photoinitialed polymerization of liquid crystalline diepoxide. Polymer 35(3):622–629

    Article  Google Scholar 

  • Jahromi S, Kuipers WAG, Norder B, Mijs WJ (1995) Liquid crystalline epoxide thermosets—dynamic mechanical and thermal properties. Macromolecules 28(7):2201–2211

    Article  Google Scholar 

  • Koerner H, Ober CK, Ku H (2011) Probing electric field response of LC thermosets via time-resolved X-ray and dielectric spectroscopy. Polymer 52(10):2206–2213

    Article  Google Scholar 

  • Korner H, Shiota A, Bunning TJ, Ober CK (1996) Orientation-on-demand thin films: curing of liquid crystalline networks in ac electric fields. Science 272(5259):252–255

    Article  Google Scholar 

  • Lee JY (2006a) The effect of substituent on the anisotropic orientation of liquid crystalline epoxy compounds. Polym Bull 57(6):983–988

    Article  Google Scholar 

  • Lee JY (2006b) Transverse alignment of liquid crystalline epoxy resin on carbon fiber surface. J Appl Polym Sci 102(1):684–689

    Article  Google Scholar 

  • Lee JY, Jang JS (1998) Effect of substituents on the curing of liquid crystalline epoxy resin. J Polym Sci A Polym Chem 36(6):911–917

    Article  Google Scholar 

  • Lee JY, Jang JS (1999) Synthesis and curing of liquid crystalline epoxy resin based on naphthalene mesogen. J Polym Sci A Polym Chem 37(4):419–425

    Article  Google Scholar 

  • Lee JY, Jang JS (2006) The effect of mesogenic length on the curing behavior and properties of liquid crystalline epoxy resins. Polymer 47(9):3036–3042

    Article  Google Scholar 

  • Lee JY, Jang J (2007) Anisotropically ordered liquid crystalline epoxy network on carbon fiber surface. Polym Bull 59(2):261–267

    Article  Google Scholar 

  • Lee JY, Jang JS, Hwang SS, Hong SM, Kim KU (1998) Synthesis and curing of liquid crystalline epoxy resins based on 4,4′-biphenol. Polymer 39(24):6121–6126

    Article  Google Scholar 

  • Lee JY, Song YW, Shim MJ (2004) Reaction kinetics of liquid crystalline epoxy (LCE) with azomethine cured with diamine. J Ind Eng Chem 10(4):601–607

    Google Scholar 

  • Li YZ, Kessler MR (2013) Liquid crystalline epoxy resin based on biphenyl mesogen: Effect of magnetic field orientation during cure. Polymer 54(21):5741–5746

    Article  Google Scholar 

  • Li Y, Kessler M (2014a) Cure kinetics of liquid crystalline epoxy resins based on biphenyl mesogen. J Therm Anal Calorim 117(1):481–488

    Article  Google Scholar 

  • Li Y, Kessler MR (2014b) Creep-resistant behavior of self-reinforcing liquid crystalline epoxy resins. Polymer 55(8):2021–2027

    Article  Google Scholar 

  • Li YZ, Badrinarayanan P, Kessler MR (2013) Liquid crystalline epoxy resin based on biphenyl mesogen: Thermal characterization. Polymer 54(12):3017–3025

    Article  Google Scholar 

  • Lin QH, Yee AF, Earls JD, Hefner RE, Sue HJ (1994) Phase transformation of a liquid crsytalline epoxy during curing. Polymer 35(12):2679–2682

    Article  Google Scholar 

  • Lin QH, Yee AF, Sue HJ, Earls JD, Hefner RE (1997) Evolution of structure and properties of a liquid crystalline epoxy during curing. J Polym Sci B Polym Phys 35(14):2363–2378

    Article  Google Scholar 

  • Lincoln DM, Douglas EP (1999) Control of orientation in liquid crystalline epoxies via magnetic field processing. Polym Eng Sci 39(10):1903–1912

    Article  Google Scholar 

  • Litt MH, Whang WT, Yen KT, Qian XJ (1993) Cross-linked liquid crystal networks from liquid crystalline monomers—synthesis and mechanical properties. J Polym Sci A Polym Chem 31(1):183–191

    Article  Google Scholar 

  • Liu JP, Wang CC, Campbell GA, Earls JD, Priester RD (1997) Effects of liquid crystalline structure formation on the curing kinetics of an epoxy resin. J Polym Sci A Polym Chem 35(6):1105–1124

    Article  Google Scholar 

  • Liu GD, Gao JG, Song LL, Hou WJ, Zhang LC (2006) Synthesis and curing of liquid-crystalline epoxy resins containing a biphenyl mesogen. Macromol Chem Phys 207(23):2222–2231

    Article  Google Scholar 

  • Liu YL, Cai ZQ, Wang WC, Wen XF, Pi PH, Zheng DF, Cheng JA, Yang ZR (2011) Mechanical properties and morphology studies of thermosets from a liquid-crystalline epoxy resin with biphenol and aromatic ester groups. Macromol Mater Eng 296(1):83–91

    Article  Google Scholar 

  • Lu MG, Shim MJ, Kim SW (2001) Curing reaction and phase change in a liquid crystalline monomer. Macromol Chem Phys 202(2):223–230

    Article  Google Scholar 

  • Mallon JJ, Adams PM (1993) Synthesis and characterization of novel epoxy monomers and liquid-crystal thermosets. J Polym Sci A Polym Chem 31(9):2249–2260

    Article  Google Scholar 

  • Micco G, Giamberini M, Amendola E, Carfagna C, Astarita G (1997) Modeling of curing reaction kinetics in liquid-crystalline epoxy resins. Ind Eng Chem Res 36(8):2976–2983

    Article  Google Scholar 

  • Mititelu A, Cascaval CN (2005) Liquid crystalline epoxy thermoset obtained from biphenyl mesogen. Polym Plast Technol Eng 44(1):151–162

    Article  Google Scholar 

  • Mititelu A, Hamaide T, Novat C, Dupuy J, Cascaval CN, Simionescu BC, Navard P (2000) Curing kinetics of liquid-crystalline epoxy resins with inverse reactivity ratios. Macromol Chem Phys 201(12):1209–1213

    Article  Google Scholar 

  • Mormann W, Brocher M (1996) “Liquid crystalline” thermosets from 4,4′-bis(2,3-epoxypropoxy)biphenyl and aromatic diamines. Macromol Chem Phys 197(6):1841–1851

    Article  Google Scholar 

  • Mormann W, Kuckertz C (1998) Liquid crystalline cyanurate thermosets through cyclotrimerisation of novel triaromatic dicyanates. Macromol Chem Phys 199(5):845–851

    Article  Google Scholar 

  • Mormann W, Zimmermann J (1995) Synthesis and mesogenic properties of diaromatic cyanate and isocyanate-monomers for liquid crystalline thermosets. Liq Cryst 19(2):227–233

    Article  Google Scholar 

  • Mormann W, Zimmermann JG (1996) Liquid crystalline thermosets through cyclotrimerization of diaromatic dicyanates. Macromolecules 29(4):1105–1109

    Article  Google Scholar 

  • Nie L, Burgess A, Ryan A (2013) Moisture permeation in liquid crystalline epoxy thermosets. Macromol Chem Phys 214(2):225–235

    Article  Google Scholar 

  • Ochi M, Tsuyuno N, Sakaga K, Nakanishi Y, Murata Y (1995) Effect of network structure on thermal and mechanical properties of biphenyl type epoxy resins cured with phenols. J Appl Polym Sci 56(9):1161–1167

    Article  Google Scholar 

  • Ortiz C, Kim R, Rodighiero E, Ober CK, Kramer EJ (1998) Deformation of a polydomain, liquid crystalline epoxy-based thermoset. Macromolecules 31(13):4074–4088

    Article  Google Scholar 

  • Ortiz C, Belenky L, Ober CK, Kramer EJ (2000) Microdeformation of a polydomain, smectic liquid crystalline thermoset. J Mater Sci 35(8):2079–2086

    Article  Google Scholar 

  • Pottie L, Costa-Torro F, Tessier M, Davidson P, Fradet A (2008) Investigation of anisotropic epoxy-amine thermosets synthesised in a magnetic field. Liq Cryst 35(8):913–924

    Article  Google Scholar 

  • Rosu D, Mititelu A, Cascaval CN (2004) Cure kinetics of a liquid-crystalline epoxy resin studied by non-isothermal data. Polym Test 23(2):209–215

    Article  Google Scholar 

  • Shiota A, Ober CK (1996) Synthesis and curing of novel LC twin epoxy monomers for liquid crystal thermosets. J Polym Sci A Polym Chem 34(7):1291–1303

    Article  Google Scholar 

  • Shiota A, Ober CK (1997a) Rigid rod and liquid crystalline thermosets. Prog Polym Sci 22(5):975–1000

    Article  Google Scholar 

  • Shiota A, Ober CK (1997b) Analysis of smectic structure formation in liquid crystalline thermosets. Polymer 38(23):5857–5867

    Article  Google Scholar 

  • Shiota A, Ober CK (1997c) Orientation of liquid crystalline epoxides under ac electric fields. Macromolecules 30(15):4278–4287

    Article  Google Scholar 

  • Shiota A, Ober CK (1998) Smectic networks obtained from twin LC epoxy monomers—mechanical deformation of the smectic networks. J Polym Sci B Polym Phys 36(1):31–38

    Article  Google Scholar 

  • Su WFA (1993) Thermoplastic and thermoset main-chain liquid crystal polymers prepared from biphenyl mesogen. J Polym Sci A Polym Chem 31(13):3251–3256

    Article  Google Scholar 

  • Su WFA, Chen KC, Tseng SY (2000) Effects of chemical structure changes on thermal, mechanical, and crystalline properties of rigid rod epoxy resins. J Appl Polym Sci 78(2):446–451

    Article  Google Scholar 

  • Sue HJ, Earls JD, Hefner RE (1997a) Fracture behaviour of liquid crystal epoxy resin systems based on the diglycidyl ether of 4,4′-dihydroxy-alpha-methylstilbene and sulphanilamide.1. Effects of curing variations. J Mater Sci 32(15):4031–4037

    Article  Google Scholar 

  • Sue HJ, Earls JD, Hefner RE (1997b) Fracture behaviour of liquid crystal epoxy resin systems based on diglycidyl ether of 4,4′-dihydroxy-alpha-methylstilbene.2. Effect due to blending with TACTIX* 556 epoxy resin and phenolic monomers. J Mater Sci 32(15):4039–4046

    Article  Google Scholar 

  • Tan CB, Sun H, Fung BM, Grady BP (2000) Properties of liquid crystal epoxy thermosets cured in a magnetic field. Macromolecules 33(17):6249–6254

    Article  Google Scholar 

  • Vyazovkin S, Mititelu A, Sbirrazzuoli N (2003) Kinetics of epoxy-amine curing accompanied by the formation of liquid crystalline structure. Macromol Rapid Commun 24(18):1060–1065

    Article  Google Scholar 

  • Zhang YX, Vyazovkin S (2006) Comparative cure behavior of DGEBA and DGEBP with 4-nitro-1,2-phenylenediamine. Polymer 47(19):6659–6663

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael R. Kessler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Li, Y., Kessler, M.R. (2016). Liquid Crystalline Epoxy Resins. In: Thakur, V., Kessler, M. (eds) Liquid Crystalline Polymers. Springer, Cham. https://doi.org/10.1007/978-3-319-22894-5_1

Download citation

Publish with us

Policies and ethics