Skip to main content

Design and Preliminary Evaluation of Free-Hand Travel Techniques for Wearable Immersive Virtual Reality Systems with Egocentric Sensing

  • Conference paper
  • First Online:
Augmented and Virtual Reality (AVR 2015)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9254))

Included in the following conference series:

Abstract

The recent availability of low cost wearable displays coupled with contactless motion sensing devices is leveraging the design of immersive and highly interactive virtual environments. In such virtual worlds, the human-computer interface, and particularly the navigation technique, plays a crucial role. This paper presents a preliminary evaluation of traveling constraints in egocentric vision. In more detail, we describe and compare in an ego-vision scenario two travel techniques, both based on a combination of visual controls and hand gestures but proving to be different in terms of the number of travel directions allowed to the user and of the travel velocity control. The experimental results indicate that, despite the users appreciating the possibility of controlling the travel direction with both head and arrows, not all the directions are considered useful in the same way. However, direct control of the velocity proves to affect positively the navigation experience in all the considered scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Google cardboard. https://www.google.com/get/cardboard/

  2. Microsoft kinect. https://www.microsoft.com/en-us/kinectforwindows/

  3. Virtuix omni. http://www.virtuix.com/

  4. Bowman, D.A., Koller, D., Hodges, L.: Travel in immersive virtual environments: an evaluation of viewpoint motion control techniques. In: Virtual Reality Annual International Symposium, 1997, 1997, vol. 215, pp. 45–52. IEEE March 1997

    Google Scholar 

  5. Bowman, D.A., Kruijff, E., LaViola, J.J., Poupyrev, I.: An introduction to 3-d user interface design. Presence: Teleoper. Virtual Environ. 10(1), 96–108 (2001)

    Article  Google Scholar 

  6. Bowman, D.A., Kruijff, E., LaViola Jr., J.J., Poupyrev, I.: 3D user interfaces: theory and practice. Addison-Wesley, Boston (2004)

    Google Scholar 

  7. Brooke, J.: Sus: a quick and dirty usability scale. In: Jordan, P.W., Weerdmeester, B., Thomas, A., Mclelland, I.L. (eds.) Usability evaluation in industry. Taylor and Francis, London (1996)

    Google Scholar 

  8. Caggianese, G., Neroni, P., Gallo, L.: Natural interaction and wearable augmentedreality for the enjoyment of the cultural heritage in outdoor conditions. In: De Paolis, L.T., Mongelli, A. (eds.) AVR 2014. LNCS, vol. 8853, pp. 267–282. Springer, Heidelberg (2014)

    Google Scholar 

  9. Chance, S.S., Gaunet, F., Beall, A.C., Loomis, J.M.: Locomotion mode affects the updating of objects encountered during travel: the contribution of vestibular and proprioceptive inputs to path integration. Presence: Teleoper. Virtual Environ. 7(2), 168–178 (1998)

    Article  Google Scholar 

  10. Dam, P., Braz, P., Raposo, A.: A study of navigation and selection techniques in virtual environments using microsoft kinect\({\textregistered }\). In: Shumaker, R. (ed.) VAMR 2013. LNCS, vol. 8021, pp. 139–148. Springer, Berlin, Heidelberg (2013)

    Chapter  Google Scholar 

  11. Dam, P.F., Carvalho, F.G., Braz, P., Raposo, A.B., Haas, A.: Hands-free interaction techniques for virtual environments. In: Symposium on Virtual and Augmented Reality, pp. 100–108 (2013)

    Google Scholar 

  12. Deligiannidis, L., Larkin, J.: Navigating inexpensively and wirelessly. In: 2008 Conference on Human System Interactions, pp. 165–169, May 2008

    Google Scholar 

  13. Lee, M., Billinghurst, M., Baek, W., Green, R., Woo, W.: A usability study of multimodal input in an augmented reality environment. Virtual Reality 17(4), 293–305 (2013)

    Article  Google Scholar 

  14. Likert, R.: A technique for the measurement of attitudes. Archives Psychol. 22, 1–55 (1932)

    Google Scholar 

  15. Medina, E., Fruland, R., Weghorst, S.: Virtusphere: Walking in a human size VR hamster ball. In: Proceedings of the Human Factors and Ergonomics Society Annual Meeting, vol. 52(27), pp. 2102–2106 (2008)

    Google Scholar 

  16. Mine, M.R.: Virtual environment interaction techniques. Technical report (1995)

    Google Scholar 

  17. Park, G., Ha, T., Woo, W.: Hand tracking with a near-range depth camera for virtual object manipulation in an wearable augmented reality. In: Shumaker, R., Lackey, S. (eds.) VAMR 2014, Part I. LNCS, vol. 8525, pp. 396–405. Springer, Heidelberg (2014)

    Google Scholar 

  18. Pietroni, E., Ray, C., Rufa, C., Pletinckx, D., Van Kampen, I.: Natural interaction in VR environments for cultural heritage and its impact inside museums: the etruscanning project. In: 2012 18th International Conference on Virtual Systems and Multimedia (VSMM), pp. 339–346, September 2012

    Google Scholar 

  19. Razzaque, S., Swapp, D., Slater, M., Whitton, M.C., Steed, A.: Redirected walking in place. In: Proceedings of the Workshop on Virtual Environments 2002, EGVE 2002, pp. 123–130. Eurographics Association (2002)

    Google Scholar 

  20. Ren, G., Li, C., O’Neill, E., Willis, P.: 3D freehand gestural navigation for interactive public displays. IEEE Comput. Graph. Appl. 33(2), 47–55 (2013)

    Article  Google Scholar 

  21. Templeman, J.N., Denbrook, P.S., Sibert, L.E.: Virtual locomotion: walking in place through virtual environments. Presence: Teleoper. Virtual Environ. 8(6), 598–617 (1999)

    Article  Google Scholar 

  22. Uebersax, J.S.: Likert scales: dispelling the confusion. http://www.john-uebersax.com/stat/likert.htm

  23. Usoh, M., Arthur, K., Whitton, M.C., Bastos, R., Steed, A., Slater, M., Brooks Jr., F.P.: Walking \(>\) walking-in-place \(>\) flying, in virtual environments. In: Proceedings of the 26th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH 1999, pp. 359–364. ACM Press/Addison-Wesley Publishing Co. (1999)

    Google Scholar 

  24. Vaughan-Nichols, S.: Game-console makers battle over motion-sensitive controllers. Computer 42(8), 13–15 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Caggianese .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Caggianese, G., Gallo, L., Neroni, P. (2015). Design and Preliminary Evaluation of Free-Hand Travel Techniques for Wearable Immersive Virtual Reality Systems with Egocentric Sensing. In: De Paolis, L., Mongelli, A. (eds) Augmented and Virtual Reality. AVR 2015. Lecture Notes in Computer Science(), vol 9254. Springer, Cham. https://doi.org/10.1007/978-3-319-22888-4_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-22888-4_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-22887-7

  • Online ISBN: 978-3-319-22888-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics