Skip to main content

Tactile Object Recognition with Semi-Supervised Learning

  • Conference paper
  • First Online:
Intelligent Robotics and Applications (ICIRA 2015)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9245))

Included in the following conference series:

Abstract

This paper introduced a novel approach to recognize objects with tactile images by utilizing semi-supervised learning approaches. In tactile object recognition, the data are normally insufficient to build robust training models. Thus the model of Ensemble Manifold Regularization, which combines concepts of multi-view learning and semi-supervised learning, is adapted in tactile sensing to achieve better recognition accuracy. Different outputs of classic bag of words with different dictionary sizes are considered as different views to produce an optimized one based on multiple graphs learning optimization. In the experiments 12 objects were used to compare the classification performances of our proposed approach and the classic BoW model and it is proved that our proposed method outperforms the classic BoW framework and objects with similar features can be better classified.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dahiya, R.S., Metta, G., Valle, M., Sandini, G.: Tactile Sensing––From Humans to Humanoids. IEEE Trans. Robot. 26(1), 1–20 (2010)

    Article  Google Scholar 

  2. Dahiya, R.S., Mittendorfer, P., Valle, M., Cheng, G., Lumelsky, V.J.: Directions Toward Effective Utilization of Tactile Skin: A Review. IEEE Sens. J. 13(11), 4121–4138 (2013)

    Article  Google Scholar 

  3. Xie, H., Liu, H., Luo, S., Seneviratne, L.D., Althoefer, K.: Fiber optics tactile array probe for tissue palpation during minimally invasive surgery. In: IEEE International Conference on Intelligent Robots and Systems (IROS), pp. 2539–2544 (2013)

    Google Scholar 

  4. Liu, H., Puangmali, P., Zbyszewski, D., Elhage, O., Dasgupta, P., Dai, J.S., Seneviratne, L., Althoefer, K.: An Indentation Depth-force Sensing Wheeled Probe for Abnormality Identification during Minimally Invasive Surgery. Proc. Inst. Mech. Eng. H. 224(6), 751–763 (2010)

    Article  Google Scholar 

  5. Althoefer, K., Zbyszewski, D., Liu, H., Puangmali, P., Seneviratne, L., Challacombe, B., Dasgupta, P., Murphy, D.: Air-cushion force-sensitive probe for soft tissue investigation during minimally invasive surgery. J. Endourol. 23(9), 1421–1424 (2009)

    Article  Google Scholar 

  6. Liu, H., Nguyen, K.C., Perdereau, V., Bimbo, J., Back, J., Godden, M., Seneviratne, L.D., Althoefer, K.: Finger contact sensing and the application in dexterous hand manipulation. Auton. Robots 39(1), 25–41 (2015)

    Article  Google Scholar 

  7. Luo, S., Mou, W., Althoefer, K., Liu, H.: Localizing the object contact through matching tactile features with visual map. In: IEEE Conference on Robotics and Automation (ICRA) (2015, to appear)

    Google Scholar 

  8. Song, X., Liu, H., Althoefer, K., Nanayakkara, T., Seneviratne, L.D.: Efficient Break-Away Friction Ratio and Slip Prediction Based on Haptic Surface Exploration. IEEE Trans. Robot. 30(1), 203–219 (2014)

    Article  Google Scholar 

  9. Bimbo, J., Seneviratne, L.D., Althoefer, K.: Combining touch and vision for the estimation of an object’s pose during manipulation. In: 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4021–4026 (2013)

    Google Scholar 

  10. Meier, M., Sch, M., Haschke, R., Ritter, H.: A Probabilistic Approach to Tactile Shape Reconstruction. IEEE Trans. Robot. 27(3), 630–635 (2011)

    Article  Google Scholar 

  11. Martins, R., Ferreira, F., Dias, J., Member, S.: Touch attention Bayesian models for robotic active haptic exploration of heterogeneous surfaces. In: Iros, pp. 1208–1215 (2014)

    Google Scholar 

  12. Chathuranga, D.S., Ho, V.A., Hirai, S.: Investigation of a biomimetic fingertip’s ability to discriminate fabrics based on surface textures. 2013 IEEE/ASME Int. Conf. Adv. Intell. Mechatronics Mechatronics Hum. Wellbeing, AIM 2013, pp. 1667–1674 (2013)

    Google Scholar 

  13. Lederman, S.J., Klatzky, R.L.: Haptic perception : A tutorial. Attention, Perception, & Psychophys 71(7), 1439–1459 (2009)

    Article  Google Scholar 

  14. Kaboli, M., Mittendorfer, P., Hugel, V., Cheng, G.: Humanoids learn object properties from robust tactile feature descriptors via multi-modal artificial skin. In: IEEE-RAS Internatianl Conference on Humanoid Robots (Humanoids) (2014, to appear)

    Google Scholar 

  15. Decherchi, S., Gastaldo, P., Dahiya, R.S., Valle, M., Zunino, R.: Tactile-Data Classification of Contact Materials Using Computational Intelligence. IEEE Trans. Robot. 27(3), 635–639 (2011)

    Article  Google Scholar 

  16. Liu, H., Song, X., Bimbo, J., Seneviratne, L., Althoefer, K.: Surface material recognition through haptic exploration using an intelligent contact sensing finger. In: International Conference On Intelligent Robots And Systems, pp. 52–57 (2012)

    Google Scholar 

  17. Pezzementi, Z., Plaku, E., Reyda, C., Hager, G.D.: Tactile-Object Recognition From Appearance Information. IEEE Trans. Robot. 27(3), 473–487 (2011)

    Article  Google Scholar 

  18. Liu, H., Greco, J., Song, X., Bimbo, J., Althoefer, K.: Tactile image based contact shape recognition using neural network. In: IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI), pp. 138–143 (2013)

    Google Scholar 

  19. Luo, S., Mou, W., Li, M., Althoefer, K., Liu, H.: Rotation and translation invariant object recognition with a tactile sensor. In: IEEE Sensors Conference, pp. 1030–1033 (2014)

    Google Scholar 

  20. Luo, S., Mou, W., Althoefer, K., Liu, H.: Novel Tactile - SIFT Descriptor for Object Shape Recognition. IEEE Sens. J. (2015, article in press)

    Google Scholar 

  21. Ji, Z., Amirabdollahian, F., Polani, D., Dautenhahn, K.: Histogram based classification of tactile patterns on periodically distributed skin sensors for a humanoid robot. In: IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN), pp. 433–440 (2011)

    Google Scholar 

  22. Schneider, A., Sturm, J., Stachniss, C., Reisert, M., Burkhardt, H., Burgard, W.: Object identification with tactile sensors using bag-of-features. In: 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 243–248 (2009)

    Google Scholar 

  23. Madry, M., Bo, L., Kragic, D., Fox, D.: ST-HMP: unsupervised spatio-temporal feature learning for tactile data. In: IEEE Conference on Robotics and Automation (ICRA), pp. 2262–2269 (2014)

    Google Scholar 

  24. Allen, P.K., Michelman, P.: Acquisition and interpretation of 3-D sensor data from touch. IEEE Trans. Robot. Autom. 6(4), 397–404 (1990)

    Article  Google Scholar 

  25. Charlebois, M., Gupta, K., Payandeh, S.: Shape description of general, curved surfaces using tactile sensing and surface normal information. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 2819–2824, April 1997

    Google Scholar 

  26. Casselli, S., Magnanini, C., Zanichelli, F.: On the robustness of haptic object recognition based on polyhedral shape representations. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), vol. 2, pp. 200–206 (1995)

    Google Scholar 

  27. Liu, H., Song, X., Nanayakkara, T., Seneviratne, L.D., Althoefer, K.: A computationally fast algorithm for local contact shape and pose classification using a tactile array sensor. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 1410–1415 (2012)

    Google Scholar 

  28. Lowe, D.G.: Distinctive Image Features from Scale-Invariant Keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004)

    Article  Google Scholar 

  29. Pezzementi, Z., Reyda, C., Hager, G.D.: Object mapping, recognition, and localization from tactile geometry. In: 2011 IEEE International Conference on Robotics and Automation (ICRA), pp. 5942–5948 (2011)

    Google Scholar 

  30. Geng, B., Tao, D., Member, S.: Ensemble Manifold Regularization. IEEE Trans. Pattern Anal. Mach. Intell. 34(6), 1227–1233 (2012)

    Article  Google Scholar 

  31. Zhu, X., Ghahramani, Z., Lafferty, J.D.: Semi-supervised learning using Gaussian fields and harmonic functions. In: Int. Conf. Mach. Learn. - ICML 2003, vol. 20, no. 2, pp. 912–919 (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongbin Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Luo, S., Liu, X., Althoefer, K., Liu, H. (2015). Tactile Object Recognition with Semi-Supervised Learning. In: Liu, H., Kubota, N., Zhu, X., Dillmann, R., Zhou, D. (eds) Intelligent Robotics and Applications. ICIRA 2015. Lecture Notes in Computer Science(), vol 9245. Springer, Cham. https://doi.org/10.1007/978-3-319-22876-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-22876-1_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-22875-4

  • Online ISBN: 978-3-319-22876-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics