Skip to main content

Carbon Nanotube Field-Emission X-Ray-Based Micro-computed Tomography for Biomedical Imaging

  • Chapter
  • First Online:
Book cover Carbon Nanomaterials for Biomedical Applications

Abstract

Conventional X-ray sources face limitations due to their reliance upon thermionic emission for electron generation. A recently developed X-ray source avoids this problem by using carbon nanotubes (CNTs) as a cathode material for field emission of electrons instead of a heated tungsten filament. This CNT X-ray source is built compactly and is capable of high flux and excellent temporal resolution, and it is well suited for a variety of biomedical imaging applications. Here, we discuss the design of a micro-computed tomography system employing a CNT field-emission X-ray tube and its applications for live small-animal imaging in preclinical studies of human illness such as cancer and cardiac disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. R. Gomer, Field Emission and Field Ionization. (Harvard University Press, Cambridge, 1961)

    Google Scholar 

  2. Y. Cheng, O. Zhou, Electron field emission from carbon nanotubes. C. R. Phys. 4, 1021–1033 (2003)

    Article  Google Scholar 

  3. F.M. Charbonnier, J.P. Barbour, W.P. Dyke, Resolution of field emission x-ray sources. Radiology 117, 165 (1974)

    Article  Google Scholar 

  4. G.S. Hallenbeck, Clinical evaluation of the 250-KV chest radiography system. Radiology 117, 1–4 (1974)

    Article  Google Scholar 

  5. R. Baptist, X-ray tube comprising an electron source with microtips and magnetic guiding means. US Pat. 6(259), 765 (2001)

    Google Scholar 

  6. P. Rangstein et al., Field-emitting structures intended for a miniature X-ray source. Sens. Actuators 82, 24–29 (2000)

    Article  Google Scholar 

  7. W.A.D. Heer, A. Chatlelain, D. Ugarte, A carbon nanotube field-emission electron source. Science 270, 1179–1180 (1995)

    Article  Google Scholar 

  8. O. Zhou, J.P. Lu, New X-ray generating mechanism using electron field emission cathode. US Patent 6(553), 096 (2003)

    Google Scholar 

  9. H. Sugie et al., Carbon nanotubes as electron source in an X-ray tube. Appl. Phys. Lett. 78, 2578 (2001)

    Article  Google Scholar 

  10. G.Z. Yue et al., Generation of continuous and pulsed diagnostic imaging X-ray radiation using a carbon-nanotube-based field-emission cathode. Appl. Phys. Lett. 81(2), 355 (2002)

    Article  Google Scholar 

  11. J. Zhang et al., A stationary scanning X-ray source based on carbon nanotube field emitters. Appl. Phys. Lett. 86, 184104 (2005)

    Article  Google Scholar 

  12. O. Zhou, J.P. Lu, X-ray generating mechanism using electron field emission cathode. US Patent 6(850), 595 (2006)

    Google Scholar 

  13. W.B. Choi et al., Fully sealed, high-brightness carbon-nanotube field-emission display. Appl. Phys. Lett. 75, 3129–3131 (1999)

    Article  Google Scholar 

  14. Y. Ye et al., Fabrication of carbon nanotubes field emission backlight unit applied to LCD. Photonics and Optoelectronics, (2009) pp. 1–3

    Google Scholar 

  15. J. Zhang et al., A multi-beam X-ray imaging system based on carbon nanotube field emitters. Proceedings of SPIE, Vol. 6142 (eds J.M. Flynn and H. Jiang), Medical Imaging, (2006) p. 614204

    Google Scholar 

  16. G. Cao, J. Zhang, O. Zhou, J. Lu, Temporal multiplexing radiography for dynamic x-ray imaging. Rev. Sci. Instrum. 80, 093902 (2009) PMCID: 2766412

    Article  Google Scholar 

  17. Z.L. Wang et al., In-situ imaging of field emission from individual carbon nanotubes and their structural damage. Appl. Phys. Lett. 80(5), 856–858 (2002)

    Article  Google Scholar 

  18. S.J. Oh et al., Liquid-phase fabrication of patterned carbon nanotube field emission cathodes. Appl. Phys. Lett. 87(19), 3738 (2004)

    Article  Google Scholar 

  19. O. Zhou, X. Calderon-Colon, in Carbon Nanotube and Related Field Emitters: Fundamentals and Applications, ed. by Y. Saito. Carbon Nanotube-Based Field Emission X-Ray Technology (Wiley-VCH Verlag GmbH & Co, Weinheim, 2010)

    Google Scholar 

  20. X. Calderon-Colon, H. Geng, B. Gao, L. An G. Cao O. Zhou, A carbon nanotube field emission cathode with high current density and long-term stability. Nanotechnology 20(2009) 325707 (5 pp)

    Google Scholar 

  21. S. Sultana et al., Design and characterization of a carbon nanotube based micro-focus X-ray tube for small animal imaging. Medical Imaging 2010: Physics of Medical Imaging. Proceedings of SPIE, 7622 (2010) p. 76225G

    Google Scholar 

  22. X. Qian et al., High resolution stationary digital breast tomosynthesis using distributed carbon nanotube X-ray source array. Med. Phys. 39, 2090 (2012)

    Article  Google Scholar 

  23. S. Wang et al., A carbon nanotube field emission multipixel X-ray array source for microradiotherapy application. Appl. Phys. Lett. 98(21), 213701 (2011)

    Article  Google Scholar 

  24. E.L. Ritman, Current status of developments and applications of micro-CT. Annu. Rev. Biomed. Eng. 13, 531–552 (2011)

    Article  Google Scholar 

  25. S.J. Schambach et al., Application of micro-CT in small animal imaging. Methods 50, 2–13 (2010)

    Article  Google Scholar 

  26. N.L. Ford et al., In vivo characterization of lung morphology and function in anesthetized free-breathing mice using micro-computed tomography. J. Appl. Physiol. 102(5), 2046–2055 (2007)

    Article  Google Scholar 

  27. S. Mukundan, Jr. et al., A liposomal nanoscale contrast agent for preclinical CT in mice. AJR Am. J. Roentgenol. 186(2), 300–307 (2006)

    Article  Google Scholar 

  28. C.T. Badea et al., Cardiac micro-computed tomography for morphological and functional phenotyping of muscle LIM protein null mice. Mol. Imaging. 6, 261–268 (2007)

    Google Scholar 

  29. M. Drangova et al., Fast retrospectively gated quantitative four-dimensional (4D) cardiac micro computed tomography imaging of free-breathing mice. Invest Radiol. 42, 85–94 (2007)

    Article  Google Scholar 

  30. S.A. Detombe et al., Longitudinal follow-up of cardiac structure and functional changes in an infarct mouse model using retrospectively gated micro-computed tomography. Invest. Radiol. 43, 520–529 (2008)

    Article  Google Scholar 

  31. S.H. Bartling et al., Retrospective motion gating in small animal CT of mice and rats. Invest. Radiol. 42(10), 704–714 (2007)

    Article  Google Scholar 

  32. S.H. Bartling et al., Intrinsic respiratory gating in small-animal CT. Eur. Radiol. 18, 1375–1385 (2008)

    Article  Google Scholar 

  33. J.G. Fox et al., (eds.), The Mouse in Biomedical Research, vol. 3 (ACLAM Series). (Academic, New York, 2007), pp. 453–454.

    Google Scholar 

  34. D. Cavanaugh et al., In vivo respiratory-gated micro-CT imaging in small-animal oncology models. Mol Imaging 3(1), 55–62 (2004)

    Article  Google Scholar 

  35. E.B. Walters et al., Improved Method of in vivo respiratory-gated micro-CT imaging. Phys. Med. Biol. 49, 4163–4172 (2004)

    Article  Google Scholar 

  36. E. Namati et al., In vivo micro-CT lung imaging via a computer-controlled intermittent iso-pressure breath hold (IIBH) technique. Phys Med Biol. 51(23), 6061–6075 (2006)

    Article  Google Scholar 

  37. G.F. Curley, L.G. Kevin, J.G. Laffey, Mechanical ventilation: Taking its toll on the lung. Anesthesiology 111(4), 701–703 (2009)

    Article  Google Scholar 

  38. L.W. Hedlund, G.A. Johnson, Mechanical ventilation for imaging the small animal lung. ILAR J. 43(3), 159–174 (2002)

    Article  Google Scholar 

  39. M. Vaneker et al., Mechanical ventilation induces a toll/interleukin-1 receptor domain-containing adapter-inducing interferon beta-dependent inflammatory response in healthy mice. Anesthesiology 111(4), 836–843 (2009)

    Article  Google Scholar 

  40. E.K. Wolthuis et al., Mechanical ventilation using non-injurious ventilation settings causes lung injury in the absence of pre-existing lung injury in healthy mice. Crit Care 13(1), R1 (2009)

    Article  Google Scholar 

  41. N.L. Ford et al., Prospective respiratory-gated micro-CT of free breathing rodents. Med. Phys. 32(9), 2888–2898 (2005)

    Article  Google Scholar 

  42. W. Maï et al., Effects of breathing and cardiac motion on spatial resolution in the microscopic imaging of rodents. Magn. Reson. Med. 53, 858–865 (2005)

    Article  Google Scholar 

  43. S.J. Schambach et al., Vascular imaging in small rodents using micro-CT. Methods 50, 26–35 (2010)

    Article  Google Scholar 

  44. B. Lu et al., Coronary artery motion during the cardiac cycle and optimal ECG triggering for coronary artery imaging. Invest. Radiol. 36, 250–256 (2001)

    Article  Google Scholar 

  45. G. Cao, L.M. Burk, Y.Z. Lee, X. Calderon-Colon, S. Sultana, J.P. Lu, O. Zhou, Prospective-gated cardiac micro-CT imaging of free-breathing mice using carbon nanotube field emission x-ray. Med. Phys. 37, 5306 (2010)

    Article  Google Scholar 

  46. Y.Z. Lee, L.M. Burk, K. Wang, G. Cao, J. Volmer, J. Lu, O. Zhou, Prospective respiratory gated carbon nanotube micro-computed tomography. Acad. Radiol. 18(5), 588–593 (2011)

    Article  Google Scholar 

  47. D. Balkan et al., Polyiodinated triglyceride lipid emulsions for use as hepatoselective contrast agents in CT—Effects of physicochemical properties on biodistribution and imaging profiles. Invest. Radiol. 35, 158–169 (2000)

    Article  Google Scholar 

  48. www.cancer.gov/cancertopics/types/lung.

  49. L.M. Burk, Y.Z. Lee, S. Heathcote, K.-h. Wang, W.Y. Kim, J. Lu, O. Zhou, Carbon nanotube based respiratory gated micro-CT imaging of a murine model of lung tumors with optical imaging correlation. Proceedings SPIE 7965, Medical Imaging 2011: Biomedical Applications in Molecular, Structural, and Functional Imaging, 79651 L (March 08, 2011); doi:10.1117/12.877465

    Google Scholar 

  50. A. Gaxiola, J. Varon, G. Valladolid, Congenital diaphragmatic hernia: An overview of the etiology and current management. Acta. Paediatr. 98(4), 621–627 (2009)

    Article  Google Scholar 

  51. L.M. Burk, J.M. Wait, Y.Z. Lee, J.P. Lu, O.Z. Zhou, Non-contact respiration monitoring for in-vivo murine micro computed tomography: Characterization and imaging applications. Phys. Med. Biol. 57, 5749–5763 (2012)

    Article  Google Scholar 

  52. W. Yuan et al., A genetic model for a central (septum transversum) congenital diaphragmatic hernia in mice lacking Slit3. Proc. Nati. Acad. Sci. 100(9), 5217–5222 (2003)

    Article  Google Scholar 

  53. J. Duan, Y. Lee, C. Jania, J. Gong, M. Rojas, L. Burk, M. Willis, J. Homeister, S. Tilley, J. Rubin, A. Deb, Rib fractures and death from deletion of osteoblast catenin in adult mice is rescued by corticosteroids, PLoS One. 8(2), e55757 (2013). doi:10.1371/journal.pone.0055757

    Article  Google Scholar 

  54. M. Mall, B.R. Grubb, J.R. Harkema, W.K. O’Neal, R.C. Boucher, Increased airway epithelial Na + absorption produces cystic fibrosis-like lung disease in mice. Nat. Med. 10, 487–493 (2004)

    Article  Google Scholar 

  55. A. Livraghi, B.R. Grubb, E.J. Hudson, K.J. Wilkinson, J.K. Sheehan, M.A. Mall, W.K. O'Neal, R.C. Boucher, S.H. Randell, Airway and lung pathology due to mucosal surface dehydration in b-epithelial Na + channel-overexpressing mice: Role of TNF-a and IL-4Ra signaling, influence of neonatal development, and limited efficacy of glucocorticoid treatment. J. Immunol. 182, 4357–4367 (2009)

    Article  Google Scholar 

  56. The International Journal of Public Health, media centre of cardiovascular diseases, the world health report 2012. http://www.who.int/mediacentre/factsheets/fs317/en/index.html. Accessed 1 April 2013

  57. A.M. Abarbanell et al., Animal models of myocardial and vascular injury. J. Surg. Res. 162, 239–249 (2010)

    Article  Google Scholar 

  58. C. Zaragoza et al., Animal models of cardiovascular diseases. J Biomed. Biotechnol. 2011, 497841 (2011)

    Article  Google Scholar 

  59. G. Christensen, Y. Wang, K.R. Chien, Physiological assessment of complex cardiac phenotypes in genetically engineered mice. Heart and circulatory physiology. Am. J. Physiol. 272, H2513–H2524 (1997)

    Google Scholar 

  60. C. Iribarren et al., Calcification of the aortic arch: Risk factors and association with coronary heart disease, stroke, and peripheral vascular disease. J. Am. Med. Assoc. 283, 2810–2815 (2000)

    Article  Google Scholar 

  61. J.M.S. Wait, H. Tomita, L. Burk, J.P. Lu, O. Zhou, N. Maeda, Y.Z. Lee, Detection of aortic arch calcification in apolipoprotein E-null mice using carbon nanotube based micro-CT system. J. Am. Heart Assoc. 2(1) (2013)

    Google Scholar 

  62. M.F. Meijs, M.L. Bots, E.J. Vonken et al., Rationale and design of the SMART heart study: A prediction model for left ventricular hypertrophy in hypertension. Neth. Heart J. 15(9), 295–298 (2007)

    Article  Google Scholar 

  63. W.E. Stansfield et al., Characterization of a model to independently study regression of ventricular hypertrophy. J. Surg. Res. 142, 387–393 (2007)

    Article  Google Scholar 

  64. G. Schillaci et al., Continuous relation between left ventricular mass and cardiovascular risk in essential hypertension. Hypertension 35, 580–586 (2000)

    Article  Google Scholar 

  65. K.G. Ordovas, C.B. Higgins, Delayed contrast enhancement on mr images of myocardium: Past, present, future. Radiology 261(2), 358–374 (2011)

    Article  Google Scholar 

  66. A.H. Mahnken et al., Assessment of myocardial edema by computed tomography in myocardial infarction. JACC Cardiovasc. Imaging 2(10), 1167–1174 (2009)

    Article  Google Scholar 

  67. L.M. Burk, K. Wang, E. Kang, M. Rojas, M. Willis, Y.Z. Lee, J. Lu O. Zhou, Imaging of myocardial infarction using carbon nanotube micro-computed tomography and delayed contrast enhancement. Proceedings SPIE 7965, Medical Imaging 2011: Biomedical Applications in Molecular, Structural, and Functional Imaging, 79651 N, 08 March 2011

    Google Scholar 

Download references

Acknowledgments

This chapter summarizes research which was performed at the University of North Carolina (UNC) at Chapel Hill under the guidance of principal investigators Otto Zhou, Jianping Lu, and Yueh Lee. This interdisciplinary work was performed by current and former PhD students and postdoctoral researchers affiliated with UNC with backgrounds in physics, materials science, biomedical engineering, and chemistry. The authors wish to especially thank our current and former colleagues for their contributions, including Christy Inscoe, Mike Hadsell, Andrew Tucker, Emily Gidcumb, Lei Zhang, Jing Shan, Pavel Chtcheprov, Marci Potuzco, Jabari Calliste, Guohua Cao, Jerry Zhang, Xin Qian, Shabana Sultana, Xiomara Calderon-Colon, David Bordelon, Ramya Rajaram, Sigen Wang, Tuyen Phan, Ko-Han Wang, and Matt Wait. We gratefully acknowledge support for this research through grants from the National Institute of Biomedical Imaging and BioEngineering, the National Cancer Institute, and the University Cancer Research Fund at the UNC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Otto Zhou PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Burk, L., Lee, Y., Lu, J., Zhou, O. (2016). Carbon Nanotube Field-Emission X-Ray-Based Micro-computed Tomography for Biomedical Imaging. In: Zhang, M., Naik, R., Dai, L. (eds) Carbon Nanomaterials for Biomedical Applications. Springer Series in Biomaterials Science and Engineering, vol 5. Springer, Cham. https://doi.org/10.1007/978-3-319-22861-7_6

Download citation

Publish with us

Policies and ethics