Skip to main content

Fluorescent Nanosensor for Drug Discovery

  • Chapter
  • First Online:
  • 1918 Accesses

Part of the book series: Springer Series in Biomaterials Science and Engineering ((SSBSE,volume 5))

Abstract

There is a pressing need for developing new anti-HIV agents due to the emergence of drug-resistant HIV mutants, side effects of existing drugs, and the mutation of the virus. High-throughput screening (HTS) has been proven as a powerful technique for the discovery of new anti-HIV drugs. The utilization of high-content screening (HCS) requires development of nanosensor that is suitable for HCS. We developed fluorescence imaging-based nanosensor for screening of inhibitors against activity of HIV-1 protease. We explored using AcGFP1 (a fluorescent mutant of the wild-type green fluorescent protein) and mCherry (a mutant of red fluorescent protein), as two fluorophores for Förster resonance energy transfer (FRET) microscopy imaging measurement of HIV-1 protease activity within living cells. Both in vitro and in vivo studies revealed that the novel molecular probes exhibit significant enhancement of FRET signals. The probe developed in this study enables HCS of new anti-HIV agents.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. P. Fortina, L.J. Kricka, S. Surrey, P. Grodzinski, Nanobiotechnology: the promise and reality of new approaches to molecular recognition. Trends Biotechnol. 23(4), 168–173 (2005)

    Article  Google Scholar 

  2. S. Jin, K. Ye, Nanoparticle-mediated drug delivery and gene therapy. Biotechnol. Prog. 23(1), 32–41 (2007)

    Article  Google Scholar 

  3. M. Wolff, J. Wiedenmann, G.U. Nienhaus, M. Valler, R. Heilker, Novel fluorescent proteins for high-content screening. Drug Discov. Today. 11(23–24), 1054–1060 (2006)

    Article  Google Scholar 

  4. A.E. Carpenter, Image-based chemical screening. Nat. Chem. Biol. 3(8), 461–465 (2007)

    Article  Google Scholar 

  5. R.N. Ghosh, Y.T. Chen, R. DeBiasio, R.L. DeBiasio, B.R. Conway, L.K. Minor, K.T. Demarest, Cell-based, high-content screen for receptor internalization, recycling and intracellular trafficking. Biotechniques 29(1), 170–175 (2000)

    Google Scholar 

  6. D.L. Taylor, E.S. Woo, K.A. Giuliano, Real-time molecular and cellular analysis: the new frontier of drug discovery. Curr. Opin. Biotechnol. 12(1), 75–81 (2001)

    Article  Google Scholar 

  7. Z. Li, Y. Yan, E.A. Powers, X. Ying, K. Janjua, T. Garyantes, B. Baron, Identification of gap junction blockers using automated fluorescence microscopy imaging. J. Biomol. Screen. 8(5), 489–499 (2003)

    Article  Google Scholar 

  8. D.L. Almholt, F. Loechel, S.J. Nielsen, C. Krog-Jensen, R. Terry, S.P. Bjorn, H.C. Pedersen, M. Praestegaard, S. Moller, M. Heide et al., Nuclear export inhibitors and kinase inhibitors identified using a MAPK-activated protein kinase 2 redistribution screen. Assay. Drug. Dev. Technol. 2(1), 7–20 (2004)

    Article  Google Scholar 

  9. B. Liu, S. Li, J. Hu, Technological advances in high-throughput screening. Am. J. Pharmacogenomics. 4(4), 263–276 (2004)

    Article  Google Scholar 

  10. M. Bickle, High-content screening: a new primary screening tool?. IDrugs 11(11), 822–826 (2008)

    Google Scholar 

  11. E.H. Mouchet, P.B. Simpson, High-content assays in oncology drug discovery: opportunities and challenges. IDrugs 11(6), 422–427 (2008)

    Google Scholar 

  12. T. Zal, Visualization of protein interactions in living cells. Adv. Exp. Med. Biol. 640, 183–197 (2008)

    Article  Google Scholar 

  13. P. Kalab, J. Soderholm, The design of Forster (fluorescence) resonance energy transfer (FRET)-based molecular sensors for Ran GTPase. Methods 51(2), 220–232 (2010)

    Article  Google Scholar 

  14. A. Masi, R. Cicchi, A. Carloni, F.S. Pavone, A. Arcangeli, Optical methods in the study of protein-protein interactions. Adv. Exp. Med. Biol. 674, 33–42 (2010)

    Article  Google Scholar 

  15. A. Uri, M. Lust, A. Vaasa, D. Lavogina, K. Viht, E. Enkvist, Bisubstrate fluorescent probes and biosensors in binding assays for HTS of protein kinase inhibitors. Biochim. Biophys. Acta. 1804(3), 541–546 (2010)

    Article  Google Scholar 

  16. M.C. Morris (2013) Fluorescent biosensors—probing protein kinase function in cancer and drug discovery. Biochim. Biophys. Acta. 1834, 1387–1395

    Article  Google Scholar 

  17. D.K. Saini, N. Gautam, Live cell imaging for studying g protein-coupled receptor activation in single cells. Methods Mol. Biol. 617, 191–207 (2010)

    Article  Google Scholar 

  18. M. Di Grandi, M. Olson, A.S. Prashad, G. Bebernitz, A. Luckay, S. Mullen, Y. Hu, G. Krishnamurthy, K. Pitts, J. O’Connell, Small molecule inhibitors of HIV RT Ribonuclease H. Bioorg. Med. Chem. Lett. 20(1), 398–402 (2010)

    Article  Google Scholar 

  19. G. Dams, K. Van Acker, E. Gustin, I. Vereycken, L. Bunkens, P. Holemans, L. Smeulders, R. Clayton, A. Ohagen, K. Hertogs, A time-resolved fluorescence assay to identify small-molecule inhibitors of HIV-1 fusion. J. Biomol. Screen. 12(6), 865–874 (2007)

    Article  Google Scholar 

  20. S. Jin, E. Ellis, J.V. Veetil, H. Yao, K. Ye Visualization of human immunodeficiency virus protease inhibition using a novel Forster resonance energy transfer molecular probe. Biotechnol. Prog. 27, 1107–1114 (2011)

    Article  Google Scholar 

  21. H. Yao, S. Jin, Enhancement of probe signal for screening of HIV-1 protease inhibitors in living cells. Sensors 12(12), 16759–16770 (2012)

    Article  Google Scholar 

  22. J. Lu, Z. Zhang, J. Yang, J. Chu, P. Li, S. Zeng, Q. Luo, Visualization of beta-secretase cleavage in living cells using a genetically encoded surface-displayed [corrected] FRET probe. Biochem. Biophys. Res. Commun. 362(1), 25–30 (2007)

    Article  Google Scholar 

  23. F. Jeppsson, S. Eketjall, J. Janson, S. Karlstrom, S. Gustavsson, L.L. Olsson, A.C. Radesater, B. Ploeger, G. Cebers, K. Kolmodin et al., Discovery of AZD3839, a potent and selective BACE1 inhibitor clinical candidate for the treatment of Alzheimer disease. J. Biol. Chem. 287(49), 41245–41257 (2012)

    Article  Google Scholar 

  24. Q. Lu, W.Y. Chen, Z.Y. Zhu, J. Chen, Y.C. Xu, M. Kaewpet, V. Rukachaisirikul, L.L. Chen, X. Shen, L655,240, acting as a competitive BACE1 inhibitor, efficiently decreases beta-amyloid peptide production in HEK293-APPswe cells. Acta. Pharmacol. Sinica. 33(12), 1459–1468 (2012)

    Article  Google Scholar 

  25. M. Tramier, M. Zahid, J.C. Mevel, M.J. Masse, M. Coppey-Moisan, Sensitivity of CFP/YFP and GFP/mCherry pairs to donor photobleaching on FRET determination by fluorescence lifetime imaging microscopy in living cells. Microsc. Res. Tech. 69(11), 933–939 (2006)

    Article  Google Scholar 

  26. L. Albertazzi, D. Arosio, L. Marchetti, F. Ricci, F. Beltram, Quantitative FRET analysis with the EGFP-mCherry fluorescent protein pair. Photochem. Photobiol. 85(1), 287–297 (2009)

    Article  Google Scholar 

  27. N. Akrap, T. Seidel, B.G. Barisas, Forster distances for fluorescence resonant energy transfer between mCherry and other visible fluorescent proteins. Anal. Biochem. 402(1), 105–106 (2010)

    Article  Google Scholar 

  28. J.V. Veetil, S. Jin, K. Ye, A glucose sensor protein for continuous glucose monitoring. Biosens. Bioelectron. 26(4), 1650–1655 (2010)

    Article  Google Scholar 

  29. H. Takanaga, B. Chaudhuri, W.B. Frommer, GLUT1 and GLUT9 as major contributors to glucose influx in HepG2 cells identified by a high sensitivity intramolecular FRET glucose sensor. Biochim. Biophys. Acta. 1778(4), 1091–1099 (2008)

    Article  Google Scholar 

  30. G.N. van der Krogt, J. Ogink, B. Ponsioen, K. Jalink, A comparison of donor-acceptor pairs for genetically encoded FRET sensors: application to the Epac cAMP sensor as an example. PloS One 3(4), e1916 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sha Jin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Jin, S., Yao, H., Ellis, E. (2016). Fluorescent Nanosensor for Drug Discovery. In: Zhang, M., Naik, R., Dai, L. (eds) Carbon Nanomaterials for Biomedical Applications. Springer Series in Biomaterials Science and Engineering, vol 5. Springer, Cham. https://doi.org/10.1007/978-3-319-22861-7_17

Download citation

Publish with us

Policies and ethics