Skip to main content

Functionalized Carbon Nanodots for Biomedical Applications

  • Chapter
  • First Online:
Carbon Nanomaterials for Biomedical Applications

Part of the book series: Springer Series in Biomaterials Science and Engineering ((SSBSE,volume 5))

Abstract

The use of biological labels has greatly assisted the study of complex biochemical interactions and the monitoring of their localization during disease diagnosis and therapy. Fluorescent labeling using organic fluorophores, genetically encoded fluorescent proteins, and semiconducting quantum dots (QDs) has been demonstrated as an indispensable tool for both in vivo and in vitro cellular imaging. In contrast to the conventional organic dyes and the fluorescent proteins showing several deficiencies like broad-spectrum profiles, very short excited-state lifetimes, and their sensitivity to photobleaching, QDs have been intensively studied as a promising luminescent probe due to high resistance to photobleaching, large stokes shift, narrow size-dependent emission spectra, broad excitation spectra, and long fluorescence lifetime. In addition, they have been engineered to carry therapeutic agents for simultaneous diagnosis and therapy (theranostics). Despite these notable advantages, the implementation of QDs to a broader clinical setting is still limited because of their intrinsic toxicity and the potential environmental concerns associated with the heavy metals present in the QDs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. F. Wang, W.B. Tan, Y. Zhang, X. Fan, M. Wang, Luminescent nanomaterials for biological labelling. Nanotechnology 17, R1–R13 (2006)

    Article  Google Scholar 

  2. U. Resch-Genger, M. Grabolle, S. Cavaliere-Jaricot, R. Nitschke, T. Nann, Quantum dots versus organic dyes as fluorescent labels. Nat. Method 5, 763–775 (2008)

    Article  Google Scholar 

  3. I.L. Medintz, H.T. Uyeda, E.R. Goldman, H. Mattoussi, Quantum dot bioconjugates for imaging, labelling and sensing. Nat. Mater. 4, 435–446 (2005)

    Article  Google Scholar 

  4. V. Bagalkot, L. Zhang, E. Levy-Nissenbaum, S. Jon, P.W. Kantoff, R. Langer, O.C. Farokhzad, Quantum dot-aptamer conjugates for synchronous cancer imaging, therapy, and sensing of drug delivery based on bi-fluorescence resonance energy transfer. Nano Lett. 7, 3065–3070 (2007)

    Article  Google Scholar 

  5. R. Savla, O. Taratula, O. Garbuzenko, T. Minko, Tumor targeted quantum dot-mucin 1 aptamer-doxorubicin conjugate for imaging and treatment of cancer. J. Control. Release 153, 16–22 (2011)

    Article  Google Scholar 

  6. S. Kim, S.W. Hwang, M.-K. Kim, D.Y. Shin, D.H. Shin, C.O. Kim, S.B. Yang, J.H. Park, E. Hwang, S.-H. Choi, G. Ko, S. Sim, C. Sone, H.J. Choi, S. Bae, B.H. Hong, Anomalous behaviors of visible luminescence from graphene quantum dots: interplay between size and shape. ACS Nano. 6, 8203–8208 (2012)

    Article  Google Scholar 

  7. H. Sun, L. Wu, W. Wei, X. Qu, Recent advances in graphene quantum dots for sensing. Mater. Today 16, 433–442 (2013)

    Article  Google Scholar 

  8. C. Wang, C. Wu, X. Zhou, T.H.X. Xin, J. Wu, J. Zhang, S. Guo, Enhancing cell nucleus accumulation and DNA cleavage activity of anti-cancer drug via graphene quantum dots. Sci. Rep. 3, 2852 (2013)

    Google Scholar 

  9. Z. Wang, J. Xia, C. Zhou, B. Via, Y. Xia, F. Zhang, Y. Li, L. Xia, J. Tang, Synthesis of strongly green-photoluminescent graphene quantum dots for drug carrier. Colloid. Surf. B. 112, 192–196 (2013)

    Article  Google Scholar 

  10. H. Zhu, W. Zhang, S.F. Yu, Realization of lasing emission from graphene quantum dots using titanium dioxide nanoparticles as light scatterers. Nanoscale 5, 1797–1802 (2013).

    Article  Google Scholar 

  11. D. Qu, M. Zheng, L. Zhang, H. Zhao, Z. Xie, X. Jing, R.E. Haddad, H. Fan, Z. Sun, Formation mechanism and optimization of highly luminescent N-doped graphene quantum dots. Sci. Rep. 4, 5294 (2014)

    Google Scholar 

  12. X.T. Zheng, A. Ananthanarayanan, K.Q. Luo, P. Chen, Glowing graphene quantum dots and carbon dots: properties, syntheses, and biological applications. Small 11, 1620–1636 (2015)

    Article  Google Scholar 

  13. S.N. Baker, G.A. Baker, Luminescent carbon nanodots: emergent nanolights. Angew. Chem. Int. Ed. 49, 6726–6744 (2010)

    Article  Google Scholar 

  14. P.G. Luo, S. Sahu, S.-T. Yang, S.K. Sonkar, J. Wang, H. Wang, G.E. LeCroy, L. Cao, Y.-P. Sun, Carbon “quantum” dots for optical bioimaging. J. Mater. Chem. B. 1, 2116–2127 (2013)

    Article  Google Scholar 

  15. P.G. Luo, F. Yang, S.-T. Yang, S.K. Sonkar, L. Yang, J.J. Broglie, Y. Liu, Y.-P. Sun, Carbon-based quantum dots for fluorescence imaging of cells and tissues. RSC Adv. 4, 10791–10807 (2014)

    Article  Google Scholar 

  16. S.T. Yang, L. Cao, P.G.J. Luo, F.S. Lu, X. Wang, H.F. Wang, M.J. Meziani, Y.F. Liu, G. Qi, Y.P. Sun, Carbon dots for optical imaging in vivo. J. Am. Chem. Soc. 131, 11308–11309 (2009)

    Article  Google Scholar 

  17. S.C. Ray, A. Saha, N.R. Jana, R. Sarkar, Fluorescent carbon nanoparticles: synthesis, characterization, and bioimaging application. J. Phys. Chem. C. 113, 18546–18551 (2009)

    Article  Google Scholar 

  18. Y.-P. Sun, B. Zhou, Y. Lin, W. Wang, K.A.S. Fernando, P. Pathak, M.J. Meziani, B.A. Harruff, X. Wang, H. Wang, P.G. Luo, H. Yang, M.E. Kose, B. Chen, L.M. Veca, S.-Y. Xie, Quantum-sized carbon dots for bright and colorful photoluminescence. J. Am. Chem. Soc. 128, 7756–7757 (2006)

    Article  Google Scholar 

  19. D. Kim, Y. Choi, E. Shin, Y.K. Jung, B.-S. Kim, Sweet nanodot for biomedical imaging: carbon dot derived from xylitol. RSC Adv. 4, 23210–23213 (2014)

    Article  Google Scholar 

  20. C. Liu, P. Zhang, X. Zhai, F. Tian, W. Li, J. Yang, Y. Liu, H. Wang, W. Wang, W. Liu, Nano-carrier for gene delivery and bioimaging based on carbon dots with PEI-passivation enhanced fluorescence. Biomaterials 33, 3604–3613 (2012)

    Article  Google Scholar 

  21. Y. Choi, S. Kim, M.-H. Choi, S.-R. Ryoo, J. Park, D.-H. Min, B.-S. Kim, Highly biocompatible carbon nanodots for simultaneous bioimaging and targeted photodynamic therapy in vitro and in vivo. Adv. Funct. Mater. 24, 5781–5789 (2014)

    Article  Google Scholar 

  22. H.U. Lee, S.Y. Park, E.S. Park, B. Son, S.C. Lee, J.W. Lee, Y.-C. Lee, K.S. Kang, M.I. Kim, H.G. Park, S. Choi, Y.S. Huh, S.-Y. Lee, K.-B. Lee, Y.-K. Oh, J. Lee, Photoluminescent carbon nanotags from harmful cyanobacteria for drug delivery and imaging in cancer cells. Sci. Rep. 4, 4665 (2014)

    Google Scholar 

  23. C.-W. Lai, Y.-H. Hsiao, Y.-K. Peng, P.-T. Chou, Facile synthesis of highly emissive carbon dots from pyrolysis of glycerol; gram scale production of carbon dots/mSiO2 for cell imaging and drug release. J. Mater. Chem. 22, 14403–14409 (2012)

    Article  Google Scholar 

  24. A. Mewada, S. Pandey, M. Thakur, D. Jadhav, M. Sharon, Swarming carbon dots for folic acid mediated delivery of doxorubicin and biological imaging. J. Mater. Chem. B. 2, 698–705 (2014)

    Article  Google Scholar 

  25. P. Pierrat, R. Wang, D. Kereselidze, M. Lux, P. Didier, A. Kichler, F. Pons, L. Lebeau, Efficient in vitro and in vivo pulmonary delivery of nucleic acid by carbon dot-based nanocarriers. Biomaterials 51, 290–302 (2015)

    Article  Google Scholar 

  26. C.P. Leamon, P.S. Low, Folate-mediated targeting: from diagnostics to drug and gene delivery. Drug. Disc. Today 6, 44–51 (2001)

    Article  Google Scholar 

  27. H. Huang, Q. Yuan, J.S. Shah, R.D.K. Misra, A new family of folate-decorated and carbon nanotube-mediated drug delivery system: synthesis and drug delivery response. Adv. Drug Deliv. Rev. 63, 1332–1339 (2011)

    Article  Google Scholar 

  28. R. Bonnett, Photosensitizers of the Porphyrin and Phthalocyanine series for Photodynamic therapy. Chem. Soc. Rev. 24, 19–33 (1995)

    Article  Google Scholar 

  29. C. Dohmen, T. Frohlich, U. Lachelt, I. Rohl, H.P. Vornlocher, P. Hadwiger, E. Wagner, Defined folate-PEG-siRNA conjugates for receptor-specific gene silencing. Mol. Ther. Nucleic Acid. 1, e7 (2012)

    Article  Google Scholar 

  30. T. Lammers, P. Peschke, R. Kuehnlein, V. Subr, K. Ulbrich, P. Huber, W. Hennink, G. Storm, Effect of Intratumoral Injection on the Biodistribution and the therapeutic potential of HPMA Copolymer-based drug delivery systems. Neoplasia 8, 788–795 (2006)

    Article  Google Scholar 

  31. H.K. Moon, S.H. Lee, H.C. Choi, In vivo near-infrared mediated tumor destruction by photothermal effect of carbon nanotubes. ACS Nano. 3, 3707–3713 (2009)

    Article  Google Scholar 

  32. A.K. Oyelere, P.C. Chen, X. Huang, I.H. El-Sayed, M.A. El-Sayed, Peptide-conjugated gold nanorods for nuclear targeting. Bioconjugate Chem. 18, 1490–1497 (2007)

    Article  Google Scholar 

  33. C.-W. Kuo, D.-Y. Chueh, N. Singh, F.-C. Chien, P. Chen, Targeted nuclear delivery using peptide-coated quantum dots. Bioconjugate Chem. 22, 1073–1080 (2011)

    Article  Google Scholar 

  34. A. Jana, B. Saha, D.R. Banerjee, S.K. Ghosh, K.T. Nguyen, X. Ma, Q. Qu, Y. Zhao, N.D.P. Singh, Photocontrolled nuclear-targeted drug delivery by single component photoresponsive fluorescent organic nanoparticles of acridin-9-methanol. Bioconjugate Chem. 24, 1828–1839 (2013)

    Article  Google Scholar 

  35. E.V.B. Gaal, R.S. Oosting, R. Eijk, M. Bakowska, D. Feyen, R.J. Kok, W.E. Hennink, D.J.A. Crommelin, E. Mastrobattista, DNA nuclear targeting sequences for non-viral gene delivery. Pharm. Res. 28, 1707–1722 (2011)

    Article  Google Scholar 

  36. R.R. Arvizo, O.R. Miranda, M.A. Thompson, C.M. Pabelick, R. Bhattacharya, J.D. Robertson, V.M. Rotello, Y.S. Prakash, P. Mukherjee, Effect of nanoparticle surface charge at the plasma membrane and beyond. Nano Lett. 10, 2543–2548 (2010)

    Article  Google Scholar 

  37. R. Lawaczeck, P.K. Nandi, C. Nicolau, Interaction of negatively charged liposomes with nuclear membranes: adsorption, lipid mixing and lysis of the vesicles. Biochim. Biophys. Acta, Biomembr. 903, 123–131 (1987)

    Article  Google Scholar 

  38. O. Seksek, J. Bolard, Nuclear pH gradient in mammalian cells revealed by laser microspectrofluorimetry. J. Cell Sci. 109, 257–262 (1996)

    Google Scholar 

  39. M. Mehiri, B. Jing, D. Ringhoff, V. Janout, L. Cassimeris, S.L. Regen, Cellular entry and nuclear targeting by a highly anionic molecular umbrella. Bioconjugate Chem. 19, 1510–1513 (2008)

    Article  Google Scholar 

  40. V.V. Breus, C.D. Heyes, K. Tron, G.U. Nienhaus, Zwitterionic biocompatible quantum dots for wide pH stability and weak nonspecific binding to cells. ACS Nano. 3, 2573–2580 (2009)

    Article  Google Scholar 

  41. J. Park, J. Nam, N. Won, H. Jin, S. Jung, S. Jung, S.-H. Cho, S. Kim, Compact and stable quantum dots with positive, negative, or zwitterionic surface: specific cell interactions and non-specific adsorptions by the surface charges. Adv. Funct. Mater. 21, 1558–1566 (2011)

    Article  Google Scholar 

  42. M. Sun, L. Yang, P. Jose, L. Wang, J. Zweit, Functionalization of quantum dots with multidentate zwitterionic ligands: impact on cellular interactions and cytotoxicity. J. Mater. Chem. B. 1, 6137–6146 (2013)

    Article  Google Scholar 

  43. Y.-Y. Yuan, C.-Q. Mao, X.-J. Du, J.-Z. Du, F. Wang, J. Wang, Surface charge switchable nanoparticles based on zwitterionic polymer for enhanced drug delivery to tumor. Adv. Mater. 24, 5476–5480 (2012)

    Article  Google Scholar 

  44. N. Zhan, G. Palui, M. Safi, X. Ji, H. Mattoussi, Multidentate zwitterionic ligands provide compact and highly biocompatible quantum dots. J. Am. Chem. Soc. 135, 13786–13795 (2013)

    Article  Google Scholar 

  45. L. Cheng, Y. Li, X. Zhai, B. Xu, Z. Cao, W. Liu, Polycation-b-polyzwitterion copolymer grafted luminescent carbon dots as a multifunctional platform for serum-resistant gene delivery and bioimaging. ACS Appl. Mater. Interface 6, 20487–20497 (2014)

    Article  Google Scholar 

  46. L.H. Hurley, DNA and its associated processes as targets for cancer therapy. Nat. Rev. Cancer 2, 188–200 (2002)

    Article  Google Scholar 

  47. J.-B. Kim, K. Urban, E. Cochran, S. Lee, A. Ang, B. Rice, A. Bata, K. Campbell, R. Coffee, A. Gorodinsky, Z. Lu, H. Zhou, T.K. Kishimoto, P. Lassota, Non-invasive detection of a small number of bioluminescent cancer cells in vivo. PLoS ONE 5, e9364 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Byeong-Su Kim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Jung, Y., Choi, Y., Kim, BS. (2016). Functionalized Carbon Nanodots for Biomedical Applications. In: Zhang, M., Naik, R., Dai, L. (eds) Carbon Nanomaterials for Biomedical Applications. Springer Series in Biomaterials Science and Engineering, vol 5. Springer, Cham. https://doi.org/10.1007/978-3-319-22861-7_10

Download citation

Publish with us

Policies and ethics