Skip to main content

Pituitary Physiology and Endocrinology

  • Chapter
Atlas of Sellar and Parasellar Lesions

Abstract

The hypothalamic-pituitary unit plays a vital role in several crucial bodily functions. The hypothalamus integrates stimuli from a wide array of sources to control behavioral, metabolic, and autonomic processes. Homeostatic mechanisms governed by the hypothalamus include water metabolism, appetite control, temperature regulation, sleep-wake cycles, and autonomic functions. It also plays a role in memory, behavior, and emotions. Importantly, the hypothalamus regulates the production and secretion of pituitary hormones. Through this function, it serves a critical role in the integration of neural and hormonal activity.

The pituitary gland, under control from peripheral hormonal feedback, intrapituitary paracrine action, and hypothalamic signaling, has a profound role in the endocrine and metabolic function of the body.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Melmed S, Kleinberg DL, Ho K. Pituitary physiology and diagnostic evaluation. In: Melmed S, Polonsky KS, Larsen PR, Kronenberg HM, editors. Williams textbook of endocrinology. 12th ed. Philadelphia: Saunders; 2011. p. 175–228.

    Chapter  Google Scholar 

  2. Ben-Shlomo A, Melmed S. Regulation of anterior pituitary function. In: Melmed S, editor. The pituitary. 3rd ed. Waltham: Academic; 2011. p. 21–45.

    Chapter  Google Scholar 

  3. Thackray VG, Mellon PL, Coss D. Hormones in synergy: regulation of the pituitary gonadotropin genes. Mol Cell Endocrinol. 2010;314:192–203.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Vadakkadath Meethal S, Atwood CS. The role of hypothalamic-pituitary-gonadal hormones in the normal structure and functioning of the brain. Cell Mol Life Sci. 2005;62:257–70.

    Article  CAS  PubMed  Google Scholar 

  5. Quintanar JL, Guzman-Soto I. Hypothalamic neurohormones and immune responses. Front Integr Neurosci. 2013;7:56.

    Article  PubMed Central  PubMed  Google Scholar 

  6. Matsumoto AM, Bremner WJ. Modulation of pulsatile gonadotropin secretion by testosterone in man. J Clin Endocrinol Metab. 1984;58:609–14.

    Article  CAS  PubMed  Google Scholar 

  7. Hayes FJ, Seminara SB, Decruz S, Boepple PA, Crowley Jr WF. Aromatase inhibition in the human male reveals a hypothalamic site of estrogen feedback. J Clin Endocrinol Metab. 2000;85:3027–35.

    CAS  PubMed  Google Scholar 

  8. O’Connor AE, De Kretser DM. Inhibins in normal male physiology. Semin Reprod Med. 2004;22:177–85.

    Article  PubMed  Google Scholar 

  9. Hall JE, Schoenfeld DA, Martin KA, Crowley Jr WF. Hypothalamic gonadotropin-releasing hormone secretion and follicle-stimulating hormone dynamics during the luteal-follicular transition. J Clin Endocrinol Metab. 1992;74:600–7.

    CAS  PubMed  Google Scholar 

  10. Sherman BM, Korenman SG. Hormonal characteristics of the human menstrual cycle throughout reproductive life. J Clin Invest. 1975;55:699–706.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Adams JM, Taylor AE, Schoenfeld DA, Crowley Jr WF, Hall JE. The midcycle gonadotropin surge in normal women occurs in the face of an unchanging gonadotropin-releasing hormone pulse frequency. J Clin Endocrinol Metab. 1994;79:858–64.

    CAS  PubMed  Google Scholar 

  12. Stocco C, Telleria C, Gibori G. The molecular control of corpus luteum formation, function, and regression. Endocr Rev. 2007;28:117–49.

    Article  CAS  PubMed  Google Scholar 

  13. Gutierrez-Pascual E, Martinez-Fuentes AJ, Pinilla L, Tena-Sempere M, Malagon MM, Castano JP. Direct pituitary effects of kisspeptin: activation of gonadotrophs and somatotrophs and stimulation of luteinising hormone and growth hormone secretion. J Neuroendocrinol. 2007;19:521–30.

    Article  CAS  PubMed  Google Scholar 

  14. Moschos S, Chan JL, Mantzoros CS. Leptin and reproduction: a review. Fertil Steril. 2002;77:433–44.

    Article  PubMed  Google Scholar 

  15. Costa-e-Sousa RH, Hollenberg AN. Minireview: the neural regulation of the hypothalamic-pituitary-thyroid axis. Endocrinology. 2012;153:4128–35.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Colaianni G, Cuscito C, Colucci S. FSH and TSH in the regulation of bone mass: the pituitary/immune/bone axis. Clin Dev Immunol. 2013;2013:382698.

    Article  PubMed Central  PubMed  Google Scholar 

  17. Moura EG, Moura CC. Regulation of thyrotropin synthesis and secretion. Arq Bras Endocrinol Metabol. 2004;48:40–52.

    Article  PubMed  Google Scholar 

  18. Mebis L, van den Berghe G. The hypothalamus-pituitary-thyroid axis in critical illness. Neth J Med. 2009;67:332–40.

    CAS  PubMed  Google Scholar 

  19. Mebis L, Debaveye Y, Visser TJ, Van den Berghe G. Changes within the thyroid axis during the course of critical illness. Endocrinol Metab Clin North Am. 2006;35:807–21.

    Article  CAS  PubMed  Google Scholar 

  20. Veldhuis JD. Changes in pituitary function with ageing and implications for patient care. Nat Rev Endocrinol. 2013;9:205–15.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Fisher DA. Physiological variations in thyroid hormones: physiological and pathophysiological considerations. Clin Chem. 1996;42:135–9.

    CAS  PubMed  Google Scholar 

  22. Mantzoros CS, Magkos F, Brinkoetter M, Sienkiewicz E, Dardeno TA, Kim SY, et al. Leptin in human physiology and pathophysiology. Am J Physiol Endocrinol Metab. 2011;301:E567–84.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Guillemin R. Hypothalamic hormones a.k.a. hypothalamic releasing factors. J Endocrinol. 2005;184:11–28.

    Article  CAS  PubMed  Google Scholar 

  24. Cooper DS, Ridgway EC, Kliman B, Kjellberg RN, Maloof F. Metabolic clearance and production rates of prolactin in man. J Clin Invest. 1979;64:1669–80.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Veldhuis JD, Johnson ML. Operating characteristics of the hypothalamo-pituitary-gonadal axis in men: circadian, ultradian, and pulsatile release of prolactin and its temporal coupling with luteinizing hormone. J Clin Endocrinol Metab. 1988;67:116–23.

    Article  CAS  PubMed  Google Scholar 

  26. Greenspan SL, Klibanski A, Rowe JW, Elahi D. Age alters pulsatile prolactin release: influence of dopaminergic inhibition. Am J Physiol. 1990;258:E799–804.

    CAS  PubMed  Google Scholar 

  27. Ignacak A, Kasztelnik M, Sliwa T, Korbut RA, Rajda K, Guzik TJ. Prolactin–not only lactotrophin. A “new” view of the “old” hormone. J Physiol Pharmacol. 2012;63:435–43.

    CAS  PubMed  Google Scholar 

  28. Horseman ND, Gregerson KA. Prolactin actions. J Mol Endocrinol. 2014;52:R95–106.

    Article  CAS  PubMed  Google Scholar 

  29. Serri O, Chik CL, Ur E, Ezzat S. Diagnosis and management of hyperprolactinemia. CMAJ. 2003;169:575–81.

    PubMed Central  PubMed  Google Scholar 

  30. Corpas E, Harman SM, Blackman MR. Human growth hormone and human aging. Endocr Rev. 1993;14:20–39.

    Article  CAS  PubMed  Google Scholar 

  31. Giustina A, Veldhuis JD. Pathophysiology of the neuroregulation of growth hormone secretion in experimental animals and the human. Endocr Rev. 1998;19:717–97.

    CAS  PubMed  Google Scholar 

  32. Reichlin S. Somatostatin. N Engl J Med. 1983;309:1495–501.

    Article  CAS  PubMed  Google Scholar 

  33. Reichlin S. Somatostatin (second of two parts). N Engl J Med. 1983;309:1556–63.

    Article  CAS  PubMed  Google Scholar 

  34. Jones JI, Clemmons DR. Insulin-like growth factors and their binding proteins: biological actions. Endocr Rev. 1995;16:3–34.

    CAS  PubMed  Google Scholar 

  35. Zadik Z, Chalew SA, McCarter Jr RJ, Meistas M, Kowarski AA. The influence of age on the 24-hour integrated concentration of growth hormone in normal individuals. J Clin Endocrinol Metab. 1985;60:513–6.

    Article  CAS  PubMed  Google Scholar 

  36. Vahl N, Jorgenson JO, Jurik AG, Christiansen JS. Abdominal adiposity and physical fitness are major determinants of the age associated decline in stimulated GH secretion in healthy adults. J Clin Endocrinol Metab. 1996;81:2209–15.

    CAS  PubMed  Google Scholar 

  37. Rasmussen MH, Frystyk J, Andersen T, Breum L, Christiansen JS, Hilsted J. The impact of obesity, fat distribution, and energy restriction on insulin-like growth factor-1 (IGF-1), IGF-binding protein-3, insulin, and growth hormone. Metabolism. 1994;43:315–9.

    Article  CAS  PubMed  Google Scholar 

  38. Takahashi Y. Essential roles of growth hormone (GH) and insulin-like growth factor-I (IGF-I) in the liver. Endocr J. 2012;59:955–62.

    Article  CAS  PubMed  Google Scholar 

  39. Brick DJ, Gerweck AV, Meenaghan E, Lawson EA, Misra M, Fazeli P, et al. Determinants of IGF1 and GH across the weight spectrum: from anorexia nervosa to obesity. Eur J Endocrinol. 2010;163:185–91.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Casanueva FF, Villanueva L, Dieguez C, Diaz Y, Cabranes JA, Szoke B, et al. Free fatty acids block growth hormone (GH) releasing hormone-stimulated GH secretion in man directly at the pituitary. J Clin Endocrinol Metab. 1987;65:634–42.

    Article  CAS  PubMed  Google Scholar 

  41. Howard AD, Feighner SD, Cully DF, Arena JP, Liberator PA, Rosenblum CI, et al. A receptor in pituitary and hypothalamus that functions in growth hormone release. Science. 1996;273:974–7.

    Article  CAS  PubMed  Google Scholar 

  42. Kojima M, Hosoda H, Date Y, Nakazato M, Matsuo H, Kangawa K. Ghrelin is a growth-hormone-releasing acylated peptide from stomach. Nature. 1999;402:656–60.

    Article  CAS  PubMed  Google Scholar 

  43. Smith RG, Jiang H, Sun Y. Developments in ghrelin biology and potential clinical relevance. Trends Endocrinol Metab. 2005;16:436–42.

    Article  CAS  PubMed  Google Scholar 

  44. Moller N, Jorgenson JO, Abildgard N, Orskov L, Schmitz O, Christiansen JS. Effects of growth hormone on glucose metabolism. Horm Res. 1991;36 Suppl 1:32–5.

    PubMed  Google Scholar 

  45. Roth J, Glick SM, Yalow RS, Berson SA. The influence of blood glucose on the plasma concentration of growth hormone. Diabetes. 1964;13:355–61.

    Article  CAS  PubMed  Google Scholar 

  46. Earll JM, Sparks LL, Forsham PH. Glucose suppression of serum growth hormone in the diagnosis of acromegaly. JAMA. 1967;201:628–30.

    Article  CAS  PubMed  Google Scholar 

  47. Buonomo FC, Baile CA. The neurophysiological regulation of growth hormone secretion. Domest Anim Endocrinol. 1990;7:435–50.

    Article  CAS  PubMed  Google Scholar 

  48. de Boer H, Blok GJ, Van der Veen EA. Clinical aspects of growth hormone deficiency in adults. Endocr Rev. 1995;16:63–86.

    Article  PubMed  Google Scholar 

  49. Melmed S. Acromegaly pathogenesis and treatment. J Clin Invest. 2009;119:3189–202.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Bale TL, Vale WW. CRF and CRF receptors: role in stress responsivity and other behaviors. Annu Rev Pharmacol Toxicol. 2004;44:525–57.

    Article  CAS  PubMed  Google Scholar 

  51. Keeney DS, Waterman MR. Regulation of steroid hydroxylase gene expression: importance to physiology and disease. Pharmacol Ther. 1993;58:301–17.

    Article  CAS  PubMed  Google Scholar 

  52. Keller-Wood ME, Dallman MF. Corticosteroid inhibition of ACTH secretion. Endocr Rev. 1984;5:1–24.

    Article  CAS  PubMed  Google Scholar 

  53. Buckley TM, Schatzberg AF. On the interactions of the hypothalamic-pituitary-adrenal (HPA) axis and sleep: normal HPA axis activity and circadian rhythm, exemplary sleep disorders. J Clin Endocrinol Metab. 2005;90:3106–14.

    Article  CAS  PubMed  Google Scholar 

  54. Gomez MT, Magiakou MA, Mastorakos G, Chrousos GP. The pituitary corticotroph is not the rate limiting step in the postoperative recovery of the hypothalamic-pituitary-adrenal axis in patients with Cushing syndrome. J Clin Endocrinol Metab. 1993;77:173–7.

    CAS  PubMed  Google Scholar 

  55. Veldhuis JD, Sharma A, Roelfsema F. Age-dependent and gender-dependent regulation of hypothalamic-adrenocorticotropic-adrenal axis. Endocrinol Metab Clin North Am. 2013;42:201–25.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. Aguilera G. HPA axis responsiveness to stress: implications for healthy aging. Exp Gerontol. 2011;46:90–5.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  57. Kanaley JA, Weltman JY, Pieper KS, Weltman A, Hartman ML. Cortisol and growth hormone responses to exercise at different times of day. J Clin Endocrinol Metab. 2001;86:2881–9.

    CAS  PubMed  Google Scholar 

  58. Donaldson ZR, Young LJ. Oxytocin, vasopressin, and the neurogenetics of sociality. Science. 2008;322:900–4.

    Article  CAS  PubMed  Google Scholar 

  59. Braunstein G. The hypothalamus. In: Melmed S, editor. The pituitary. 3rd ed. Waltham: Academic; 2011. p. 303–37.

    Chapter  Google Scholar 

  60. Yang HP, Wang L, Han L, Wang SC. Nonsocial functions of hypothalamic oxytocin. ISRN Neurosci. 2013;2013:179272.

    Article  PubMed Central  PubMed  Google Scholar 

  61. Agre P, King LS, Yasui M, Guggino WB, Ottersen OP, Fujiyoshi Y, et al. Aquaporin water channels–from atomic structure to clinical medicine. J Physiol. 2002;542:3–16.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  62. Viero C, Shibuya I, Kitamura N, Verkhratsky A, Fujihara H, Katoh A, et al. REVIEW: oxytocin: crossing the bridge between basic science and pharmacotherapy. CNS Neurosci Ther. 2010;16:e138–56.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Carmichael MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Padilla, M., Carmichael, J. (2016). Pituitary Physiology and Endocrinology. In: Zada, G., Lopes, M., Mukundan Jr., S., Laws Jr., E. (eds) Atlas of Sellar and Parasellar Lesions. Springer, Cham. https://doi.org/10.1007/978-3-319-22855-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-22855-6_3

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-22854-9

  • Online ISBN: 978-3-319-22855-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics