Skip to main content

Biology and Genetics of Breast Cancer

  • Chapter
Breast Disease

Abstract

Breast cancer is the most common cancer among women, and it has a complex genetic basis for susceptibility. Understanding the mechanisms of DNA alterations leading to carcinogenesis can provide crucial insights for resolving the development of malignant processes such as growth, invasion, and metastasis. This chapter reviews hereditary and somatic genetic alterations, epigenetic misregulations, and miRNA signatures associated with breast cancer. The chapter also emphasizes the molecular profiles of breast cancer and the critical signaling pathway alterations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. McPherson K, Steel CM, Dixon JM. ABC of breast diseases. Breast cancer-epidemiology, risk factors, and genetics. BMJ. 2000;321(7261):624–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Bydoun M, Marcato P, Dellaire G. Breast cancer genomics. In: Arceci GDNBJ, editor. Cancer genomics. Boston: Academic; 2014. p. 213–32.

    Chapter  Google Scholar 

  3. Gayther SA, Pharoah PD, Ponder BA. The genetics of inherited breast cancer. J Mammary Gland Biol Neoplasia. 1998;3(4):365–76.

    Article  CAS  PubMed  Google Scholar 

  4. Fackenthal JD, Olopade OI. Breast cancer risk associated with BRCA1 and BRCA2 in diverse populations. Nat Rev Cancer. 2007;7(12):937–48.

    Article  CAS  PubMed  Google Scholar 

  5. Nathanson KL, Wooster R, Weber BL. Breast cancer genetics: what we know and what we need. Nat Med. 2001;7(5):552–6.

    Article  CAS  PubMed  Google Scholar 

  6. Lakhani SR, Gusterson BA, Jacquemier J, Sloane JP, Anderson TJ, van de Vijver MJ, et al. The pathology of familial breast cancer: histological features of cancers in families not attributable to mutations in BRCA1 or BRCA2. Clin Can Res. 2000;6(3):782–9.

    CAS  Google Scholar 

  7. Melhem-Bertrandt A, Bojadzieva J, Ready KJ, Obeid E, Liu DD, Gutierrez-Barrera AM, et al. Early onset HER2-positive breast cancer is associated with germline TP53 mutations. Cancer. 2012;118(4):908–13.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Hynes NE, Dey JH. PI3K inhibition overcomes trastuzumab resistance: blockade of ErbB2/ErbB3 is not always enough. Cancer Cell. 2009;15(5):353–5.

    Article  CAS  PubMed  Google Scholar 

  9. Curigliano G. New drugs for breast cancer subtypes: targeting driver pathways to overcome resistance. Cancer Treat Rev. 2012;38(4):303–10.

    Article  CAS  PubMed  Google Scholar 

  10. Hirshfield KM, Rebbeck TR, Levine AJ. Germline mutations and polymorphisms in the origins of cancers in women. J Oncol. 2010;2010:297671.

    Article  PubMed Central  PubMed  Google Scholar 

  11. Habermann JK, Doering J, Hautaniemi S, Roblick UJ, Bundgen NK, Nicorici D, et al. The gene expression signature of genomic instability in breast cancer is an independent predictor of clinical outcome. Int J Cancer. 2009;124(7):1552–64.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Herman JG, Baylin SB. Gene silencing in cancer in association with promoter hypermethylation. NEJM. 2003;349(21):2042–54.

    Article  CAS  PubMed  Google Scholar 

  13. Baylin SB, Jones PA. A decade of exploring the cancer epigenome – biological and translational implications. Nat Rev Cancer. 2011;11(10):726–34.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Minning C, Mokhtar NM, Abdullah N, Muhammad R, Emran NA, Ali SA, et al. Exploring breast carcinogenesis through integrative genomics and epigenomics analyses. Int J Oncol. 2014;45(5):1959–68.

    CAS  PubMed  Google Scholar 

  15. Yan PS, Shi H, Rahmatpanah F, Hsiau TH, Hsiau AH, Leu YW, et al. Differential distribution of DNA methylation within the RASSF1A CpG island in breast cancer. Cancer Res. 2003;63(19):6178–86.

    CAS  PubMed  Google Scholar 

  16. Esteller M. Epigenetics in cancer. NEJM. 2008;358(11):1148–59.

    Article  CAS  PubMed  Google Scholar 

  17. Esteller M. Relevance of DNA methylation in the management of cancer. Lancet Oncol. 2003;4(6):351–8.

    Article  CAS  PubMed  Google Scholar 

  18. Ellis MJ, Ding L, Shen D, Luo J, Suman VJ, Wallis JW, et al. Whole-genome analysis informs breast cancer response to aromatase inhibition. Nature. 2012;486(7403):353–60.

    CAS  PubMed Central  PubMed  Google Scholar 

  19. Elston CW, Ellis IO, Pinder SE. Pathological prognostic factors in breast cancer. Critical Rev Oncol/Hematol. 1999;31(3):209–23.

    Article  CAS  Google Scholar 

  20. Cancer Genome Atlas Network. Comprehensive molecular portraits of human breast tumours. Nature. 2012;490(7418):61–70.

    Google Scholar 

  21. Dawson SJ, Rueda OM, Aparicio S, Caldas C. A new genome-driven integrated classification of breast cancer and its implications. EMBO J. 2013;32(5):617–28.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Sorlie T, Tibshirani R, Parker J, Hastie T, Marron JS, Nobel A, et al. Repeated observation of breast tumor subtypes in independent gene expression data sets. Proc Natl Acad Sci U S A. 2003;100(14):8418–23.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Perou CM, Sorlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA, et al. Molecular portraits of human breast tumours. Nature. 2000;406(6797):747–52.

    Article  CAS  PubMed  Google Scholar 

  24. Sandhu R, Parker JS, Jones WD, Livasy CA, Coleman WB. Microarray-based gene expression profiling for molecular classification of breast cancer and identification of new targets for therapy. Lab Med. 2010;41:364–72.

    Article  Google Scholar 

  25. Prat A, Parker JS, Karginova O, Fan C, Livasy C, Herschkowitz JI, et al. Phenotypic and molecular characterization of the claudin-low intrinsic subtype of breast cancer. Breast Cancer Res. 2010;12(5):R68.

    Article  PubMed Central  PubMed  Google Scholar 

  26. Prat A, Perou CM. Deconstructing the molecular portraits of breast cancer. Mol Oncol. 2011;5(1):5–23.

    Article  CAS  PubMed  Google Scholar 

  27. Albain KS, Barlow WE, Shak S, Hortobagyi GN, Livingston RB, Yeh IT, et al. Prognostic and predictive value of the 21-gene recurrence score assay in postmenopausal women with node-positive, oestrogen-receptor-positive breast cancer on chemotherapy: a retrospective analysis of a randomised trial. Lancet Oncol. 2010;11(1):55–65.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Mook S, Schmidt MK, Viale G, Pruneri G, Eekhout I, Floore A, et al. The 70-gene prognosis-signature predicts disease outcome in breast cancer patients with 1–3 positive lymph nodes in an independent validation study. Breast Cancer Res Treat. 2009;116(2):295–302.

    Article  CAS  PubMed  Google Scholar 

  29. Knauer M, Mook S, Rutgers EJ, Bender RA, Hauptmann M, van de Vijver MJ, et al. The predictive value of the 70-gene signature for adjuvant chemotherapy in early breast cancer. Breast Cancer Res Treat. 2010;120(3):655–61.

    Article  CAS  PubMed  Google Scholar 

  30. Sanchez-Navarro I, Gamez-Pozo A, Pinto A, Hardisson D, Madero R, Lopez R, et al. An 8-gene qRT-PCR-based gene expression score that has prognostic value in early breast cancer. BMC Cancer. 2010;10:336.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Parker JS, Mullins M, Cheang MC, Leung S, Voduc D, Vickery T, et al. Supervised risk predictor of breast cancer based on intrinsic subtypes. J Clin Oncol. 2009;27(8):1160–7.

    Article  PubMed Central  PubMed  Google Scholar 

  32. Paik S, Tang G, Shak S, Kim C, Baker J, Kim W, et al. Gene expression and benefit of chemotherapy in women with node-negative, estrogen receptor-positive breast cancer. J Clin Oncol. 2006;24(23):3726–34.

    Article  CAS  PubMed  Google Scholar 

  33. Gatza ML, Silva GO, Parker JS, Fan C, Perou CM. An integrated genomics approach identifies drivers of proliferation in luminal-subtype human breast cancer. Nat Genet. 2014;46(10):1051–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Staaf J, Ringner M, Vallon-Christersson J, Jonsson G, Bendahl PO, Holm K, et al. Identification of subtypes in human epidermal growth factor receptor 2-positive breast cancer reveals a gene signature prognostic of outcome. J Clin Oncol. 2010;28(11):1813–20.

    Article  PubMed  Google Scholar 

  35. Khoury T, Kanehira K, Wang D, Ademuyiwa F, Mojica W, Cheney R, et al. Breast carcinoma with amplified HER2: a gene expression signature specific for trastuzumab resistance and poor prognosis. Mod Pathol. 2010;23(10):1364–78.

    Article  CAS  PubMed  Google Scholar 

  36. Arteaga CL, Engelman JA. ERBB receptors: from oncogene discovery to basic science to mechanism-based cancer therapeutics. Cancer Cell. 2014;25(3):282–303.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Arribas J, Baselga J, Pedersen K, Parra-Palau JL. p95HER2 and breast cancer. Cancer Res. 2011;71(5):1515–9.

    Article  CAS  PubMed  Google Scholar 

  38. Turner NC, Reis-Filho JS. Basal-like breast cancer and the BRCA1 phenotype. Oncogene. 2006;25(43):5846–53.

    Article  CAS  PubMed  Google Scholar 

  39. Yau C, Esserman L, Moore DH, Waldman F, Sninsky J, Benz CC. A multigene predictor of metastatic outcome in early stage hormone receptor-negative and triple-negative breast cancer. Breast Cancer Res. 2010;12(5):R85.

    Article  PubMed Central  PubMed  Google Scholar 

  40. Lehmann BD, Bauer JA, Chen X, Sanders ME, Chakravarthy AB, Shyr Y, et al. Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. J Clin Invest. 2011;121(7):2750–67.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Shah SP, Roth A, Goya R, Oloumi A, Ha G, Zhao Y, et al. The clonal and mutational evolution spectrum of primary triple-negative breast cancers. Nature. 2012;486(7403):395–9.

    CAS  PubMed  Google Scholar 

  42. Seal MD, Chia SK. What is the difference between triple-negative and basal breast cancers? Cancer J. 2010;16(1):12–6.

    Article  CAS  PubMed  Google Scholar 

  43. Vuong D, Simpson PT, Green B, Cummings MC, Lakhani SR. Molecular classification of breast cancer. Virchows Arch. 2014;465(1):1–14.

    Article  CAS  PubMed  Google Scholar 

  44. Sotiriou C, Wirapati P, Loi S, Harris A, Fox S, Smeds J, et al. Gene expression profiling in breast cancer: understanding the molecular basis of histologic grade to improve prognosis. J Nat Cancer Inst. 2006;98(4):262–72.

    Article  CAS  PubMed  Google Scholar 

  45. Stephens PJ, Tarpey PS, Davies H, Van Loo P, Greenman C, Wedge DC, et al. The landscape of cancer genes and mutational processes in breast cancer. Nature. 2012;486(7403):400–4.

    CAS  PubMed Central  PubMed  Google Scholar 

  46. Bertucci F, Orsetti B, Negre V, Finetti P, Rouge C, Ahomadegbe JC, et al. Lobular and ductal carcinomas of the breast have distinct genomic and expression profiles. Oncogene. 2008;27(40):5359–72.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Wang C, Machiraju R, Huang K. Breast cancer patient stratification using a molecular regularized consensus clustering method. Methods. 2014;67(3):304–12.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116:281–97.

    Article  CAS  PubMed  Google Scholar 

  49. Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D, et al. MicroRNA expression profiles classify human cancers. Nature. 2005;435:834–8.

    Article  CAS  PubMed  Google Scholar 

  50. Andorfer CA, Necela BM, Thompson EA, Perez EA. MicroRNA signatures: clinical biomarkers for the diagnosis and treatment of breast cancer. Trends Mol Med. 2011;17(6):313–9.

    Article  CAS  PubMed  Google Scholar 

  51. Nygren MK, Tekle C, Ingebrigtsen VA, Makela R, Krohn M, Aure MR, et al. Identifying microRNAs regulating B7-H3 in breast cancer: the clinical impact of microRNA-29c. Br J Cancer. 2014;110(8):2072–80.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Gebeshuber CA, Martinez J. miR-100 suppresses IGF2 and inhibits breast tumorigenesis by interfering with proliferation and survival signaling. Oncogene. 2013;32(27):3306–10.

    Article  CAS  PubMed  Google Scholar 

  53. Lobert S, Jefferson B, Morris K. Regulation of beta-tubulin isotypes by micro-RNA 100 in MCF7 breast cancer cells. Cytoskeleton. 2011;68(6):355–62.

    Article  CAS  PubMed  Google Scholar 

  54. Shen L, Li J, Xu L, Ma J, Li H, Xiao X, et al. miR-497 induces apoptosis of breast cancer cells by targeting Bcl-w. Exp Ther Med. 2012;3(3):475–80.

    CAS  PubMed Central  PubMed  Google Scholar 

  55. Li D, Zhao Y, Liu C, Chen X, Qi Y, Jiang Y, et al. Analysis of MiR-195 and MiR-497 expression, regulation and role in breast cancer. Clin Cancer Res. 2011;17(7):1722–30.

    Article  CAS  PubMed  Google Scholar 

  56. Nagpal N, Ahmad HM, Molparia B, Kulshreshtha R. MicroRNA-191, an estrogen-responsive microRNA, functions as an oncogenic regulator in human breast cancer. Carcinogenesis. 2013;34(8):1889–99.

    Article  CAS  PubMed  Google Scholar 

  57. Ding X, Park SI, McCauley LK, Wang CY. Signaling between transforming growth factor beta (TGF-beta) and transcription factor SNAI2 represses expression of microRNA miR-203 to promote epithelial-mesenchymal transition and tumor metastasis. J Biol Chem. 2013;288(15):10241–53.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. Zhang Z, Zhang B, Li W, Fu L, Fu L, Zhu Z, et al. Epigenetic silencing of miR-203 upregulates SNAI2 and contributes to the invasiveness of malignant breast cancer cells. Genes Cancer. 2011;2(8):782–91.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. Shaker O, Maher M, Nassar Y, Morcos G, Gad Z. Role of microRNAs -29b-2, −155, −197 and −205 as diagnostic biomarkers in serum of breast cancer females. Gene. 2015;560(1):77–82.

    Article  CAS  PubMed  Google Scholar 

  60. Zhao H, Wilkie T, Deol Y, Sneh A, Ganju A, Basree M, et al. miR-29b defines the pro-/anti-proliferative effects of S100A7 in breast cancer. Mol Cancer. 2015;14(1):11.

    Google Scholar 

  61. Chang Y-Y, Kuo W-H, Hung J-H, Lee C-Y, Lee Y-H, Chang Y-C, Lin W-C, et al. Deregulated microRNAs in triple-negative breast cancer revealed by deep sequencing. Mol Cancer. 2015;14:36.

    Google Scholar 

  62. Neel JC, Lebrun JJ. Activin and TGFbeta regulate expression of the microRNA-181 family to promote cell migration and invasion in breast cancer cells. Cell Signal. 2013;25(7):1556–66.

    Article  CAS  PubMed  Google Scholar 

  63. Ferracin M, Bassi C, Pedriali M, Pagotto S, D’Abundo L, Zagatti B, et al. miR-125b targets erythropoietin and its receptor and their expression correlates with metastatic potential and ERBB2/HER2 expression. Mol Cancer. 2013;12(1):130.

    Google Scholar 

  64. Feliciano A, Castellvi J, Artero-Castro A, Leal JA, Romagosa C, Hernandez-Losa J, et al. miR-125b acts as a tumor suppressor in breast tumorigenesis via its novel direct targets ENPEP, CK2-alpha, CCNJ, and MEGF9. PloS One 2013;8(10):e76247.

    Google Scholar 

  65. Yager JD, Davidson NE. Estrogen carcinogenesis in breast cancer. NEJM. 2006;354(3):270–82.

    Article  CAS  PubMed  Google Scholar 

  66. Blume-Jensen P, Hunter T. Oncogenic kinase signaling. Nature. 2001;411(6835):355–65.

    Article  CAS  PubMed  Google Scholar 

  67. Schlessinger J. Cell signaling by receptor tyrosine kinases. Cell. 2000;103(2):211–25.

    Article  CAS  PubMed  Google Scholar 

  68. Hubbard SR, Miller WT. Receptor tyrosine kinases: mechanism of activation and signaling. Curr Opin Cell Biol. 2007;19(2):117–23.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  69. Yarden Y, Pines G. The ERBB network: at last, cancer therapy meets system biology. Nat Rev Cancer. 2012;12(8):553–63.

    Article  CAS  PubMed  Google Scholar 

  70. Eccles SA. The epidermal growth factor receptor/ErbB/HER family in normal and malignant breast biology. Int J Develop Biol. 2011;55(7–9):685–96.

    Article  Google Scholar 

  71. Gala K, Chandarlapaty S. Molecular pathways: HER3 targeted therapy. Clin Cancer Res. 2014;20(6):1410–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  72. Amin DN, Campbell MR, Moasser MM. The role of HER3, the unpretentious member of the HER family, in cancer biology and cancer therapeutics. Semin Cell Dev Biol. 2010;21(9):944–50.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  73. Roskoski R. The ErbB/HER family of protein-tyrosine kinases and cancer. Pharmacol Res. 2014;79:34–74.

    Article  CAS  PubMed  Google Scholar 

  74. Jaiswal BS, Kljavin NM, Stawiski EW, Chan E, Parikh C, Durinck S, et al. Oncogenic ERBB3 mutations in human cancers. Cancer Cell. 2013;23(5):603–17.

    Article  CAS  PubMed  Google Scholar 

  75. Carnero A. The PKB/Akt pathway in cancer. Curr Pharm Des. 2010;16(1):34–44.

    Article  CAS  PubMed  Google Scholar 

  76. Saal LH, Holm K, Maurer M, et al. PIK3CA mutations correlate with hormone receptors, node metastasis, and ErbB2, and are mutually exclusive with PTEN loss in human breast carcinoma. Cancer Res. 2005;65(7):2554–9.

    Article  CAS  PubMed  Google Scholar 

  77. Thorpe LM, Yuzugullu H, Zhao JJ. PI3K in cancer:divergent roles of isoforms, modes of activation and therapeutic targeting. Nat Rev Cancer. 2015;15:7–24.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  78. Wang GL, Semenza GL. Purification and characterization of hypoxia-inducible factor 1. J Biol Chem. 1995;270:1230–7.

    Article  CAS  PubMed  Google Scholar 

  79. Semenza GL. Hypoxia inducible factors in physiology and medicine. Cell. 2012;148:399–408.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  80. Yamamoto Y, Ibusuki M, Okumura Y, Kawasoe T, Kai K, et al. Hypoxia-inducible factor 1α is closely linked to an aggressive phenotype in breast cancer. Breast Cancer Res Treat. 2008;110:465–75.

    Article  CAS  PubMed  Google Scholar 

  81. Helczynska K, Larsson AM, Holmquist Mengelbier L, Bridges E, Fredlund E, Borgquist S, et al. Hypoxia-inducible factor 2α correlates to distant recurrence and poor outcome in invasive breast cancer. Cancer Res. 2008;68:9212–20.

    Article  CAS  PubMed  Google Scholar 

  82. Zhang H, Wong CC, Wei H, Gilkes DM, Korangath P, Chaturvedi P, et al. HIF-1-dependent expression of angiopoietin-like 4 and L1CAM mediates vascular metastasis of hypoxic breast cancer cells to the lungs. Oncogene. 2012;31:1757–70.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  83. Erler JT, Bennewith KL, Nicolau M, Dornhöfer N, Kong C, Le QT, et al. Lysyl oxidase is essential for hypoxia-induced metastasis. Nature. 2006;440:1222–6.

    Article  CAS  PubMed  Google Scholar 

  84. Erler JT, Bennewith KL, Cox TR, Lang G, Bird D, Koong A, et al. Hypoxia -induced lysyl oxidase is a critical mediator of bone marrow cell recruitment to form the premetastatic niche. Cancer Cell. 2009;15:35–44.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  85. Perryman L, Erler JT. Lysyl oxidase in cancer research. Future Oncol. 2014;10(9):1709–17.

    Article  CAS  PubMed  Google Scholar 

  86. Barker HE, Cox TR, Erler JT. The rationale for targeting the LOX family in cancer. Nat Rev Cancer. 2012;12:540–52.

    Article  CAS  PubMed  Google Scholar 

  87. Dvorak HF. Vascular permeability factor/vascular endothelial growth factor: a critical cytokine in tumor angiogenesis and a potential target for diagnosis and therapy. J Clin Oncol. 2002;20:4368–80.

    Article  CAS  PubMed  Google Scholar 

  88. Sitohy B, Nagy JA, Dvorak HF. Anti- VEGF/VEGFR therapy for cancer: reassessing the target. Cancer Res. 2012;72(8):1909–14.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  89. Tredan O, Lacroix-Triki M, Guiu S, Mouret-Reynier MA, Barriere J, et al. Angiogenesis and tumor microenvironment: bevacizumab in the breast cancer model. Target Oncol. 2014;10(2):189–98. [Epub ahead of print]

    Google Scholar 

  90. Ribeiro-Silva A, Ribeiro do Vale F, Zucoloto S. Vascular endothelial growth factor expression in the basal subtype of breast carcinoma. Am J Clin Pathol. 2006;125:512–8.

    Article  CAS  PubMed  Google Scholar 

  91. Linderholm BK, Hellborg H, Johansson U, Elmberger G, Skoog L, Lehtiö J, et al. Significantly higher levels of vascular endothelial growth factor (VEGF) and shorter survival times for patients with primary operable triple-negative breast cancer. Ann Oncol. 2009;20:1639–46.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

The author gratefully acknowledges M. Emre Gedik for his valuable assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Lale Dogan MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Dogan, A.L. (2016). Biology and Genetics of Breast Cancer. In: Aydiner, A., Ä°ÄŸci, A., Soran, A. (eds) Breast Disease. Springer, Cham. https://doi.org/10.1007/978-3-319-22843-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-22843-3_8

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-22842-6

  • Online ISBN: 978-3-319-22843-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics