Skip to main content

T-Cell Responses to EBV

  • Chapter
  • First Online:
Epstein Barr Virus Volume 2

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 391))

Abstract

Epstein–Barr virus (EBV) is arguably one of the most successful pathogens of humans, persistently infecting over ninety percent of the world’s population. Despite this high frequency of carriage, the virus causes apparently few adverse effects in the vast majority of infected individuals. Nevertheless, the potent growth transforming ability of EBV means the virus has the potential to cause malignancies in infected individuals. Indeed, EBV is thought to cause 1 % of human malignancies, equating to 200,000 malignancies each year. A clear factor as to why virus-induced disease is relatively infrequent in healthy infected individuals is the presence of a potent immune response to EBV, in particular, that mediated by T cells. Thus, patient groups with immunodeficiencies or whose cellular immune response is suppressed have much higher frequencies of EBV-induced disease and, in at least some cases, these diseases can be controlled by restoration of the T-cell compartment. In this chapter, we will primarily review the role the αβ subset of T cells in the control of EBV in healthy and diseased individuals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BL:

Burkitt lymphoma

CMV:

Cytomegalovirus

DLBCL:

Diffuse large B-cell lymphoma

E:

Early

EBNA:

Epstein–Barr nuclear antigen

EBV:

Epstein–Barr virus

ENKTL:

Extranodal NK/T-cell lymphoma

GCa:

Gastric carcinoma

HL:

Hodgkin lymphoma

HLA:

Human leucocyte antigen

IE:

Immediate early

IM:

Infectious mononucleosis

iNKT:

Invariant natural killer T cell

L:

Late

LCL:

Lymphoblastoid cell line

LMP:

Latent membrane protein

MHC:

Major histocompatability complex

NK:

Natural killer

NPC:

Nasopharyngeal carcinoma

PTLD:

Post-transplant lymphoproliferative disease

SAP:

Signaling lymphocytic activation molecule-associated protein

TAP:

Transporter associated with antigen processing

TCR:

T-cell receptor

VCA:

Viral capsid antigen

XIAP:

X-linked inhibitor of apoptosis protein

XLP:

X-linked lymphoproliferative disease

References

  • Abbott RJ, Quinn LL, Leese AM, Scholes HM, Pachnio A, Rickinson AB (2013) CD8+ T cell responses to lytic EBV infection: late antigen specificities as subdominant components of the total response. J Immunol 191(11):5398–5409

    Article  CAS  PubMed  Google Scholar 

  • Adhikary D, Behrends U, Moosmann A, Witter K, Bornkamm GW, Mautner J (2006) Control of Epstein-Barr virus infection in vitro by T helper cells specific for virion glycoproteins. J Exp Med 203(4):995–1006

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Amyes E, Hatton C, Montamat-Sicotte D, Gudgeon N, Rickinson AB, McMichael AJ, Callan MF (2003) Characterization of the CD4 + T cell response to Epstein-Barr virus during primary and persistent infection. J Exp Med 198(6):903–911

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Assis MC, Campos AH, Oliveira JS, Soares FA, Silva JM, Silva PB, Penna AD, Souza EM, Baiocchi OC (2012) Increased expression of CD4+ CD25+ FOXP3+ regulatory T cells correlates with Epstein-Barr virus and has no impact on survival in patients with classical Hodgkin lymphoma in Brazil. Med Oncol 29(5):3614–3619

    Article  CAS  PubMed  Google Scholar 

  • Babcock GJ, Decker LL, Volk M, Thorley-Lawson DA (1998) EBV persistence in memory B cells in vivo. Immunity 9(3):395–404

    Article  CAS  PubMed  Google Scholar 

  • Balfour HH Jr, Holman CJ, Hokanson KM, Lelonek MM, Giesbrecht JE, White DR, Schmeling DO, Webb CH, Cavert W, Wang DH, Brundage RC (2005) A prospective clinical study of Epstein-Barr virus and host interactions during acute infectious mononucleosis. J Infect Dis 192(9):1505–1512

    Article  PubMed  Google Scholar 

  • Balfour HH Jr, Odumade OA, Schmeling DO, Mullan BD, Ed JA, Knight JA, Vezina HE, Thomas W, Hogquist KA (2013) Behavioral, virologic, and immunologic factors associated with acquisition and severity of primary Epstein-Barr virus infection in university students. J Infect Dis 207(1):80–88

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Barker JN, Doubrovina E, Sauter C, Jaroscak JJ, Perales MA, Doubrovin M, Prockop SE, Koehne G, O’Reilly RJ (2010) Successful treatment of EBV-associated posttransplantation lymphoma after cord blood transplantation using third-party EBV-specific cytotoxic T lymphocytes. Blood 116(23):5045–5049

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Barros MH, Vera-Lozada G, Soares FA, Niedobitek G, Hassan R (2012) Tumor microenvironment composition in pediatric classical Hodgkin lymphoma is modulated by age and Epstein-Barr virus infection. Int J Cancer 131(5):1142–1152

    Google Scholar 

  • Baumforth KR, Birgersdotter A, Reynolds GM, Wei W, Kapatai G, Flavell JR, Kalk E, Piper K, Lee S, Machado L, Hadley K, Sundblad A, Sjoberg J, Bjorkholm M, Porwit AA, Yap LF, Teo S, Grundy RG, Young LS, Ernberg I, Woodman CB, Murray PG (2008) Expression of the Epstein-Barr virus-encoded Epstein-Barr virus nuclear antigen 1 in Hodgkin’s lymphoma cells mediates up-regulation of CCL20 and the migration of regulatory T cells. Am J Pathol 173(1):195–204

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Biggar RJ, Henle G, Bocker J, Lennette ET, Fleisher G, Henle W (1978) Primary Epstein-Barr virus infections in African infants. II. Clinical and serological observations during seroconversion. Int J Cancer 22(3):244–250

    Article  CAS  PubMed  Google Scholar 

  • Blake N, Haigh T, Shaka’a G, Croom-Carter D, Rickinson A (2000) The importance of exogenous antigen in priming the human CD8+ T cell response: lessons from the EBV nuclear antigen EBNA1. J Immunol 165(12):7078–7087

    Article  CAS  PubMed  Google Scholar 

  • Bollard CM, Gottschalk S, Torrano V, Diouf O, Ku S, Hazrat Y, Carrum G, Ramos C, Fayad L, Shpall EJ, Pro B, Liu H, Wu MF, Lee D, Sheehan AM, Zu Y, Gee AP, Brenner MK, Heslop HE, Rooney CM (2014) Sustained complete responses in patients with lymphoma receiving autologous cytotoxic T lymphocytes targeting Epstein-Barr virus latent membrane proteins. J Clin Oncol 32(8):798–808

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Brennan RM, Burrows SR (2008) A mechanism for the HLA-A*01-associated risk for EBV+ Hodgkin lymphoma and infectious mononucleosis. Blood 112(6):2589–2590

    Article  CAS  PubMed  Google Scholar 

  • Cai MB, Han HQ, Bei JX, Liu CC, Lei JJ, Cui Q, Feng QS, Wang HY, Zhang JX, Liang Y, Chen LZ, Kang TB, Shao JY, Zeng YX (2012) Expression of human leukocyte antigen G is associated with prognosis in nasopharyngeal carcinoma. Int J Biol Sci 8(6):891–900

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Callan MF, Fazou C, Yang H, Rostron T, Poon K, Hatton C, McMichael AJ (2000) CD8(+) T-cell selection, function, and death in the primary immune response in vivo. J Clin Invest 106(10):1251–1261

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Callan MF, Steven N, Krausa P, Wilson JD, Moss PA, Gillespie GM, Bell JI, Rickinson AB, McMichael AJ (1996) Large clonal expansions of CD8+ T cells in acute infectious mononucleosis. Nat Med 2(8):906–911

    Article  CAS  PubMed  Google Scholar 

  • Callan MF, Tan L, Annels N, Ogg GS, Wilson JD, O’Callaghan CA, Steven N, McMichael AJ, Rickinson AB (1998) Direct visualization of antigen-specific CD8+ T cells during the primary immune response to Epstein-Barr virus in vivo. J Exp Med 187(9):1395–1402

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Catalina MD, Sullivan JL, Bak KR, Luzuriaga K (2001) Differential evolution and stability of epitope-specific CD8(+) T cell responses in EBV infection. J Immunol 167(8):4450–4457

    Article  CAS  PubMed  Google Scholar 

  • Catalina MD, Sullivan JL, Brody RM, Luzuriaga K (2002) Phenotypic and functional heterogeneity of EBV epitope-specific CD8+ T cells. J Immunol 168(8):4184–4191

    Article  CAS  PubMed  Google Scholar 

  • Chapman AL, Rickinson AB, Thomas WA, Jarrett RF, Crocker J, Lee SP (2001) Epstein-Barr virus-specific cytotoxic T lymphocyte responses in the blood and tumor site of Hodgkin’s disease patients: implications for a T-cell-based therapy. Cancer Res 61(16):6219–6226

    CAS  PubMed  Google Scholar 

  • Chattopadhyay PK, Chelimo K, Embury PB, Mulama DH, Sumba PO, Gostick E, Ladell K, Brodie TM, Vulule J, Roederer M, Moormann AM, Price DA (2013) Holoendemic malaria exposure is associated with altered Epstein-Barr virus-specific CD8(+) T-cell differentiation. J Virol 87(3):1779–1788

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chen BJ, Chapuy B, Ouyang J, Sun HH, Roemer MG, Xu ML, Yu H, Fletcher CD, Freeman GJ, Shipp MA, Rodig SJ (2013) PD-L1 expression is characteristic of a subset of aggressive B-cell lymphomas and virus-associated malignancies. Clin Cancer Res 19(13):3462–3473

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chetaille B, Bertucci F, Finetti P, Esterni B, Stamatoullas A, Picquenot JM, Copin MC, Morschhauser F, Casasnovas O, Petrella T, Molina T, Vekhoff A, Feugier P, Bouabdallah R, Birnbaum D, Olive D, Xerri L (2009) Molecular profiling of classical Hodgkin lymphoma tissues uncovers variations in the tumor microenvironment and correlations with EBV infection and outcome. Blood 113(12):2765–3775

    Article  CAS  PubMed  Google Scholar 

  • Chia WK, Teo M, Wang WW, Lee B, Ang SF, Tai WM, Chee CL, Ng J, Kan R, Lim WT, Tan SH, Ong WS, Cheung YB, Tan EH, Connolly JE, Gottschalk S, Toh HC (2014) Adoptive T-cell transfer and chemotherapy in the first-line treatment of metastatic and/or locally recurrent nasopharyngeal carcinoma. Mol Ther 22(1):132–139

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chijioke O, Muller A, Feederle R, Barros MH, Krieg C, Emmel V, Marcenaro E, Leung CS, Antsiferova O, Landtwing V, Bossart W, Moretta A, Hassan R, Boyman O, Niedobitek G, Delecluse HJ, Capaul R, Munz C (2013) Human natural killer cells prevent infectious mononucleosis features by targeting lytic Epstein-Barr virus infection. Cell Rep 5(6):1489–1498

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chung BK, Tsai K, Allan LL, Zheng DJ, Nie JC, Biggs CM, Hasan MR, Kozak FK, van den Elzen P, Priatel JJ, Tan R (2013) Innate immune control of EBV-infected B cells by invariant natural killer T cells. Blood 122(15):2600–2608

    Article  CAS  PubMed  Google Scholar 

  • Clute SC, Watkin LB, Cornberg M, Naumov YN, Sullivan JL, Luzuriaga K, Welsh RM, Selin LK (2005) Cross-reactive influenza virus-specific CD8+ T cells contribute to lymphoproliferation in Epstein-Barr virus-associated infectious mononucleosis. J Clin Invest 115(12):3602–3612

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cohen M, De Matteo E, Narbaitz M, Carreno FA, Preciado MV, Chabay PA (2013) Epstein-Barr virus presence in pediatric diffuse large B-cell lymphoma reveals a particular association and latency patterns: analysis of viral role in tumor microenvironment. Int J Cancer 132(7):1572–1580

    Article  CAS  PubMed  Google Scholar 

  • Colonna-Romano G, Akbar AN, Aquino A, Bulati M, Candore G, Lio D, Ammatuna P, Fletcher JM, Caruso C, Pawelec G (2007) Impact of CMV and EBV seropositivity on CD8 T lymphocytes in an old population from West-Sicily. Exp Gerontol 42(10):995–1002

    Article  CAS  PubMed  Google Scholar 

  • Comoli P, Pedrazzoli P, Maccario R, Basso S, Carminati O, Labirio M, Schiavo R, Secondino S, Frasson C, Perotti C, Moroni M, Locatelli F, Siena S (2005) Cell therapy of stage IV nasopharyngeal carcinoma with autologous Epstein-Barr virus-targeted cytotoxic T lymphocytes. J Clin Oncol 23(35):8942–8949

    Article  CAS  PubMed  Google Scholar 

  • Cornberg M, Clute SC, Watkin LB, Saccoccio FM, Kim SK, Naumov YN, Brehm MA, Aslan N, Welsh RM, Selin LK (2010) CD8 T cell cross-reactivity networks mediate heterologous immunity in human EBV and murine vaccinia virus infections. J Immunol 184(6):2825–2838

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Crawford DH, Macsween KF, Higgins CD, Thomas R, McAulay K, Williams H, Harrison N, Reid S, Conacher M, Douglas J, Swerdlow AJ (2006) A cohort study among university students: identification of risk factors for Epstein-Barr virus seroconversion and infectious mononucleosis. Clin Infect Dis 43(3):276–282

    Article  PubMed  Google Scholar 

  • Crough T, Burrows JM, Fazou C, Walker S, Davenport MP, Khanna R (2005) Contemporaneous fluctuations in T cell responses to persistent herpes virus infections. Eur J Immunol 35(1):139–149

    Article  CAS  PubMed  Google Scholar 

  • Decaussin G, Sbih-Lammali F, de Turenne-Tessier M, Bouguermouh A, Ooka T (2000) Expression of BARF1 gene encoded by Epstein-Barr virus in nasopharyngeal carcinoma biopsies. Cancer Res 60(19):5584–5588

    CAS  PubMed  Google Scholar 

  • Demachi-Okamura A, Ito Y, Akatsuka Y, Tsujimura K, Morishima Y, Takahashi T, Kuzushima K (2006) Epstein-Barr virus (EBV) latent membrane protein-1-specific cytotoxic T lymphocytes targeting EBV-carrying natural killer cell malignancies. Eur J Immunol 36(3):593–602

    Article  CAS  PubMed  Google Scholar 

  • Dojcinov SD, Venkataraman G, Pittaluga S, Wlodarska I, Schrager JA, Raffeld M, Hills RK, Jaffe ES (2011) Age-related EBV-associated lymphoproliferative disorders in the Western population: a spectrum of reactive lymphoid hyperplasia and lymphoma. Blood 117(18):4726–4735

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dunne PJ, Faint JM, Gudgeon NH, Fletcher JM, Plunkett FJ, Soares MV, Hislop AD, Annels NE, Rickinson AB, Salmon M, Akbar AN (2002) Epstein-Barr virus-specific CD8(+) T cells that re-express CD45RA are apoptosis-resistant memory cells that retain replicative potential. Blood 100(3):933–940

    Article  CAS  PubMed  Google Scholar 

  • Dutton A, O’Neil JD, Milner AE, Reynolds GM, Starczynski J, Crocker J, Young LS, Murray PG (2004) Expression of the cellular FLICE-inhibitory protein (c-FLIP) protects Hodgkin’s lymphoma cells from autonomous Fas-mediated death. Proc Natl Acad Sci USA 101(17):6611–6616

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fafi-Kremer S, Morand P, Brion JP, Pavese P, Baccard M, Germi R, Genoulaz O, Nicod S, Jolivet M, Ruigrok RW, Stahl JP, Seigneurin JM (2005) Long-term shedding of infectious epstein-barr virus after infectious mononucleosis. J Infect Dis 191(6):985–989

    Article  PubMed  Google Scholar 

  • Faint JM, Annels NE, Curnow SJ, Shields P, Pilling D, Hislop AD, Wu L, Akbar AN, Buckley CD, Moss PA, Adams DH, Rickinson AB, Salmon M (2001) Memory T cells constitute a subset of the human CD8+ CD45RA+ pool with distinct phenotypic and migratory characteristics. Immunol 167(1):212–220

    Article  CAS  Google Scholar 

  • Farnault L, Gertner-Dardenne J, Gondois-Rey F, Michel G, Chambost H, Hirsch I, Olive D (2013) Clinical evidence implicating gamma-delta T cells in EBV control following cord blood transplantation. Bone Marrow Transplant 48(11):1478–1479

    Article  CAS  PubMed  Google Scholar 

  • Fleisher G, Henle W, Henle G, Lennette ET, Biggar RJ (1979) Primary infection with Epstein-Barr virus in infants in the United States: clinical and serologic observations. J Infect Dis 139(5):553–558

    Article  CAS  PubMed  Google Scholar 

  • Fogg MH, Wirth LJ, Posner M, Wang F (2009) Decreased EBNA-1-specific CD8+ T cells in patients with Epstein-Barr virus-associated nasopharyngeal carcinoma. Proc Natl Acad Sci USA 106(9):3318–3323

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fox CP, Haigh TA, Taylor GS, Long HM, Lee SP, Shannon-Lowe C, O’Connor S, Bollard CM, Iqbal J, Chan WC, Rickinson AB, Bell AI, Rowe M (2010) A novel latent membrane 2 transcript expressed in Epstein-Barr virus-positive NK- and T-cell lymphoproliferative disease encodes a target for cellular immunotherapy. Blood 116(19):3695–3704

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fu T, Voo KS, Wang RF (2004) Critical role of EBNA1-specific CD4+ T cells in the control of mouse Burkitt lymphoma in vivo. J Clin Invest 114(4):542–550

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fujishima N, Hirokawa M, Fujishima M, Yamashita J, Saitoh H, Ichikawa Y, Horiuchi T, Kawabata Y, Sawada KI (2007) Skewed T cell receptor repertoire of Vdelta1(+) gammadelta T lymphocytes after human allogeneic haematopoietic stem cell transplantation and the potential role for Epstein-Barr virus-infected B cells in clonal restriction. Clin Exp Immunol 149(1):70–79

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gandhi MK, Lambley E, Duraiswamy J, Dua U, Smith C, Elliott S, Gill D, Marlton P, Seymour J, Khanna R (2006) Expression of LAG-3 by tumor-infiltrating lymphocytes is coincident with the suppression of latent membrane antigen-specific CD8+ T-cell function in Hodgkin lymphoma patients. Blood 108(7):2280–2289

    Article  CAS  PubMed  Google Scholar 

  • Gandhi MK, Moll G, Smith C, Dua U, Lambley E, Ramuz O, Gill D, Marlton P, Seymour JF, Khanna R (2007) Galectin-1 mediated suppression of Epstein-Barr virus specific T-cell immunity in classic Hodgkin lymphoma. Blood 110(4):1326–1329

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gebhardt T, Wakim LM, Eidsmo L, Reading PC, Heath WR, Carbone FR (2009) Memory T cells in nonlymphoid tissue that provide enhanced local immunity during infection with herpes simplex virus. Nat Immunol 10(5):524–530

    Article  CAS  PubMed  Google Scholar 

  • Gerdemann U, Keirnan JM, Katari UL, Yanagisawa R, Christin AS, Huye LE, Perna SK, Ennamuri S, Gottschalk S, Brenner MK, Heslop HE, Rooney CM, Leen AM (2012) Rapidly generated multivirus-specific cytotoxic T lymphocytes for the prophylaxis and treatment of viral infections. Mol Ther 20(8):1622–1632

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gottschalk S, Ng CY, Perez M, Smith CA, Sample C, Brenner MK, Heslop HE, Rooney CM (2001) An Epstein-Barr virus deletion mutant associated with fatal lymphoproliferative disease unresponsive to therapy with virus-specific CTLs. Blood 97(4):835–843

    Article  CAS  PubMed  Google Scholar 

  • Green MR, Rodig S, Juszczynski P, Ouyang J, Sinha P, O’Donnell E, Neuberg D, Shipp MA (2012) Constitutive AP-1 activity and EBV infection induce PD-L1 in Hodgkin lymphomas and posttransplant lymphoproliferative disorders: implications for targeted therapy. Clin Cancer Res 18(6):1611–1618

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gudgeon NH, Taylor GS, Long HM, Haigh TA, Rickinson AB (2005) Regression of Epstein-Barr virus-induced B-cell transformation in vitro involves virus-specific CD8+ T cells as the principal effectors and a novel CD4+ T-cell reactivity. J Virol 79(9):5477–5488

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hacker G, Kromer S, Falk M, Heeg K, Wagner H, Pfeffer K (1992) V delta 1 + subset of human gamma delta T cells responds to ligands expressed by EBV-infected Burkitt lymphoma cells and transformed B lymphocytes. J Immunol 149(12):3984–3989

    CAS  PubMed  Google Scholar 

  • Hadinoto V, Shapiro M, Sun CC, Thorley-Lawson DA (2009) The dynamics of EBV shedding implicate a central role for epithelial cells in amplifying viral output. PLoS Pathog 5(7):e1000496

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Haigh TA, Lin X, Jia H, Hui EP, Chan AT, Rickinson AB, Taylor GS (2008) EBV latent membrane proteins (LMPs) 1 and 2 as immunotherapeutic targets: LMP-specific CD4+ cytotoxic T cell recognition of EBV-transformed B cell lines. J Immunol 180(3):1643–1654

    Article  CAS  PubMed  Google Scholar 

  • Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674

    Article  CAS  PubMed  Google Scholar 

  • Haque T, Wilkie GM, Jones MM, Higgins CD, Urquhart G, Wingate P, Burns D, McAulay K, Turner M, Bellamy C, Amlot PL, Kelly D, MacGilchrist A, Gandhi MK, Swerdlow AJ, Crawford DH (2007) Allogeneic cytotoxic T-cell therapy for EBV-positive posttransplantation lymphoproliferative disease: results of a phase 2 multicenter clinical trial. Blood 110(4):1123–1131

    Article  CAS  PubMed  Google Scholar 

  • Hatta K, Morimoto A, Ishii E, Kimura H, Ueda I, Hibi S, Todo S, Sugimoto T, Imashuku S (2007) Association of transforming growth factor-beta1 gene polymorphism in the development of Epstein-Barr virus-related hematologic diseases. Haematologica 92(11):1470–1474

    Article  CAS  PubMed  Google Scholar 

  • Heller KN, Arrey F, Steinherz P, Portlock C, Chadburn A, Kelly K, Munz C (2008) Patients with Epstein Barr virus-positive lymphomas have decreased CD4(+) T-cell responses to the viral nuclear antigen 1. Int J Cancer 123(12):2824–2831

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Helminen M, Lahdenpohja N, Hurme M (1999) Polymorphism of the interleukin-10 gene is associated with susceptibility to Epstein-Barr virus infection. J Infect Dis 180(2):496–499

    Article  CAS  PubMed  Google Scholar 

  • Heslop HE, Slobod KS, Pule MA, Hale GA, Rousseau A, Smith CA, Bollard CM, Liu H, Wu MF, Rochester RJ, Amrolia PJ, Hurwitz JL, Brenner MK, Rooney CM (2010) Long-term outcome of EBV-specific T-cell infusions to prevent or treat EBV-related lymphoproliferative disease in transplant recipients. Blood 115(5):925–935

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hislop AD, Annels NE, Gudgeon NH, Leese AM, Rickinson AB (2002) Epitope-specific evolution of human CD8(+) T cell responses from primary to persistent phases of Epstein-Barr virus infection. J Exp Med 195(7):893–905

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hislop AD, Gudgeon NH, Callan MF, Fazou C, Hasegawa H, Salmon M, Rickinson AB (2001) EBV-specific CD8+ T cell memory: relationships between epitope specificity, cell phenotype, and immediate effector function. J Immunol 167(4):2019–2029

    Article  CAS  PubMed  Google Scholar 

  • Hislop AD, Kuo M, Drake-Lee AB, Akbar AN, Bergler W, Hammerschmitt N, Khan N, Palendira U, Leese AM, Timms JM, Bell AI, Buckley CD, Rickinson AB (2005) Tonsillar homing of Epstein-Barr virus-specific CD8+ T cells and the virus-host balance. J Clin Invest 115(9):2546–2555

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hislop AD, Ressing ME, van Leeuwen D, Pudney VA, Horst D, Koppers-Lalic D, Croft NP, Neefjes JJ, Rickinson AB, Wiertz EJ (2007a) A CD8+ T cell immune evasion protein specific to Epstein-Barr virus and its close relatives in Old World primates. J Exp Med 204(8):1863–1873

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hislop AD, Taylor GS, Sauce D, Rickinson AB (2007b) Cellular responses to viral infection in humans: lessons from Epstein-Barr virus. Annu Rev Immunol 25:587–617

    Article  CAS  PubMed  Google Scholar 

  • Hoshino Y, Morishima T, Kimura H, Nishikawa K, Tsurumi T, Kuzushima K (1999) Antigen-driven expansion and contraction of CD8+ -activated T cells in primary EBV infection. J Immunol 163(10):5735–5740

    CAS  PubMed  Google Scholar 

  • Huang X, Hepkema B, Nolte I, Kushekhar K, Jongsma T, Veenstra R, Poppema S, Gao Z, Visser L, Diepstra A, van den Berg A (2012) HLA-A*02:07 is a protective allele for EBV negative and a susceptibility allele for EBV positive classical Hodgkin lymphoma in China. PLoS ONE 7(2):e31865

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Huang X, van den Berg A, Gao Z, Visser L, Nolte I, Vos H, Hepkema B, Kooistra W, Poppema S, Diepstra A (2010) Expression of HLA class I and HLA class II by tumor cells in Chinese classical Hodgkin lymphoma patients. PLoS ONE 5(5):e10865

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Hui EP, Taylor GS, Jia H, Ma BB, Chan SL, Ho R, Wong WL, Wilson S, Johnson BF, Edwards C, Stocken DD, Rickinson AB, Steven NM, Chan AT (2013) Phase I trial of recombinant modified vaccinia ankara encoding Epstein-Barr viral tumor antigens in nasopharyngeal carcinoma patients. Cancer Res 73(6):1676–1688

    Article  CAS  PubMed  Google Scholar 

  • Humme S, Reisbach G, Feederle R, Delecluse HJ, Bousset K, Hammerschmidt W, Schepers A (2003) The EBV nuclear antigen 1 (EBNA1) enhances B cell immortalization several thousandfold. Proc Natl Acad Sci USA 100(19):10989–10994

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hwang AE, Hamilton AS, Cockburn MG, Ambinder R, Zadnick J, Brown EE, Mack TM, Cozen W (2012) Evidence of genetic susceptibility to infectious mononucleosis: a twin study. Epidemiol Infect 140(11):2089–2095

    Article  CAS  PubMed  Google Scholar 

  • Icheva V, Kayser S, Wolff D, Tuve S, Kyzirakos C, Bethge W, Greil J, Albert MH, Schwinger W, Nathrath M, Schumm M, Stevanovic S, Handgretinger R, Lang P, Feuchtinger T (2013) Adoptive transfer of epstein-barr virus (EBV) nuclear antigen 1-specific t cells as treatment for EBV reactivation and lymphoproliferative disorders after allogeneic stem-cell transplantation. J Clin Oncol 31(1):39–48

    Article  CAS  PubMed  Google Scholar 

  • Jayasooriya S, de Silva TI, Njie-Jobe J, Sanyang C, Leese AM, Bell AI, McAulay KA, Yanchun P, Long HM, Dong T, Whittle HC, Rickinson AB, Rowland-Jones SL, Hislop AD, Flanagan KL (2015) Early virological and immunological events in asymptomatic Epstein-Barr virus infection in African children. PLoS Pathog (in press)

    Google Scholar 

  • Juszczynski P, Ouyang J, Monti S, Rodig SJ, Takeyama K, Abramson J, Chen W, Kutok JL, Rabinovich GA, Shipp MA (2007) The AP1-dependent secretion of galectin-1 by Reed Sternberg cells fosters immune privilege in classical Hodgkin lymphoma. Proc Natl Acad Sci USA 104(32):13134–13139

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kelly G, Bell A, Rickinson A (2002) Epstein-Barr virus-associated Burkitt lymphomagenesis selects for downregulation of the nuclear antigen EBNA2. Nat Med 8(10):1098–1104

    Article  CAS  PubMed  Google Scholar 

  • Khan N, Hislop A, Gudgeon N, Cobbold M, Khanna R, Nayak L, Rickinson AB, Moss PA (2004) Herpesvirus-specific CD8 T cell immunity in old age: cytomegalovirus impairs the response to a coresident EBV infection. J Immunol 173(12):7481–7489

    Article  CAS  PubMed  Google Scholar 

  • Khanna R, Bell S, Sherritt M, Galbraith A, Burrows SR, Rafter L, Clarke B, Slaughter R, Falk MC, Douglass J, Williams T, Elliott SL, Moss DJ (1999) Activation and adoptive transfer of Epstein-Barr virus-specific cytotoxic T cells in solid organ transplant patients with posttransplant lymphoproliferative disease. Proc Natl Acad Sci USA 96(18):10391–10396

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Khanna R, Burrows SR, Argaet V, Moss DJ (1994) Endoplasmic reticulum signal sequence facilitated transport of peptide epitopes restores immunogenicity of an antigen processing defective tumour cell line. Int Immunol 6(4):639–645

    Article  CAS  PubMed  Google Scholar 

  • Khanna R, Burrows SR, Steigerwald-Mullen PM, Thomson SA, Kurilla MG, Moss DJ (1995) Isolation of cytotoxic T lymphocytes from healthy seropositive individuals specific for peptide epitopes from Epstein-Barr virus nuclear antigen 1: implications for viral persistence and tumor surveillance. Virology 214(2):633–637

    Article  CAS  PubMed  Google Scholar 

  • Khanna R, Burrows SR, Thomson SA, Moss DJ, Cresswell P, Poulsen LM, Cooper L (1997) Class I processing-defective Burkitt’s lymphoma cells are recognized efficiently by CD4+ EBV-specific CTLs. J Immunol 158(8):3619–3625

    CAS  PubMed  Google Scholar 

  • Khanna R, Busson P, Burrows SR, Raffoux C, Moss DJ, Nicholls JM, Cooper L (1998) Molecular characterization of antigen-processing function in nasopharyngeal carcinoma (NPC): evidence for efficient presentation of Epstein-Barr virus cytotoxic T-cell epitopes by NPC cells. Cancer Res 58(2):310–314

    CAS  PubMed  Google Scholar 

  • Klibi J, Niki T, Riedel A, Pioche-Durieu C, Souquere S, Rubinstein E, Le Moulec S, Guigay J, Hirashima M, Guemira F, Adhikary D, Mautner J, Busson P (2009) Blood diffusion and Th1-suppressive effects of galectin-9-containing exosomes released by Epstein-Barr virus-infected nasopharyngeal carcinoma cells. Blood 113(9):1957–1966

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi H, Nagato T, Takahara M, Sato K, Kimura S, Aoki N, Azumi M, Tateno M, Harabuchi Y, Celis E (2008) Induction of EBV-latent membrane protein 1-specific MHC class II-restricted T-cell responses against natural killer lymphoma cells. Cancer Res 68(3):901–908

    Article  CAS  PubMed  Google Scholar 

  • Landais E, Saulquin X, Scotet E, Trautmann L, Peyrat MA, Yates JL, Kwok WW, Bonneville M, Houssaint E (2004) Direct killing of Epstein-Barr virus (EBV)-infected B cells by CD4 T cells directed against the EBV lytic protein BHRF1. Blood 103(4):1408–1416

    Article  CAS  PubMed  Google Scholar 

  • Lau KM, Cheng SH, Lo KW, Lee SA, Woo JK, van Hasselt CA, Lee SP, Rickinson AB, Ng MH (2007) Increase in circulating Foxp3+ CD4+ CD25(high) regulatory T cells in nasopharyngeal carcinoma patients. Br J Cancer 96(4):617–622

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lee SP, Brooks JM, Al-Jarrah H, Thomas WA, Haigh TA, Taylor GS, Humme S, Schepers A, Hammerschmidt W, Yates JL, Rickinson AB, Blake NW (2004) CD8 T cell recognition of endogenously expressed epstein-barr virus nuclear antigen 1. J Exp Med 199(10):1409–1420

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lee SP, Chan AT, Cheung ST, Thomas WA, CroomCarter D, Dawson CW, Tsai CH, Leung SF, Johnson PJ, Huang DP (2000) CTL control of EBV in nasopharyngeal carcinoma (NPC): EBV-specific CTL responses in the blood and tumors of NPC patients and the antigen-processing function of the tumor cells. J Immunol 165(1):573–582

    Article  CAS  PubMed  Google Scholar 

  • Lee SP, Constandinou CM, Thomas WA, Croom-Carter D, Blake NW, Murray PG, Crocker J, Rickinson AB (1998) Antigen presenting phenotype of Hodgkin Reed-Sternberg cells: analysis of the HLA class I processing pathway and the effects of interleukin-10 on Epstein-Barr virus-specific cytotoxic T-cell recognition. Blood 92(3):1020–1030

    CAS  PubMed  Google Scholar 

  • Leen A, Meij P, Redchenko I, Middeldorp J, Bloemena E, Rickinson A, Blake N (2001) Differential immunogenicity of Epstein-Barr virus latent-cycle proteins for human CD4(+) T-helper 1 responses. J Virol 75(18):8649–8659

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Leung CS, Haigh TA, Mackay LK, Rickinson AB, Taylor GS (2010) Nuclear location of an endogenously expressed antigen, EBNA1, restricts access to macroautophagy and the range of CD4 epitope display. Proc Natl Acad Sci USA 107(5):2165–2170

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Li J, Huang ZF, Xiong G, Mo HY, Qiu F, Mai HQ, Chen QY, He J, Chen SP, Zheng LM, Qian CN, Zeng YX (2011) Distribution, characterization, and induction of CD8+ regulatory T cells and IL-17-producing CD8+ T cells in nasopharyngeal carcinoma. J Transl Med 9:189

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lin X, Gudgeon NH, Hui EP, Jia H, Qun X, Taylor GS, Barnardo MC, Lin CK, Rickinson AB, Chan AT (2008) CD4 and CD8 T cell responses to tumour-associated Epstein-Barr virus antigens in nasopharyngeal carcinoma patients. Cancer Immunol Immunother 57(7):963–975

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, van den Berg A, Veenstra R, Rutgers B, Nolte I, van Imhoff G, Visser L, Diepstra A (2013) PML nuclear bodies and SATB1 are associated with HLA class I expression in EBV+ Hodgkin lymphoma. PLoS ONE 8(8):e72930

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Long HM, Chagoury OL, Leese AM, Ryan GB, James E, Morton LT, Abbott RJ, Sabbah S, Kwok W, Rickinson AB (2013) MHC II tetramers visualize human CD4+ T cell responses to Epstein-Barr virus infection and demonstrate atypical kinetics of the nuclear antigen EBNA1 response. J Exp Med 210(5):933–949

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Long HM, Haigh TA, Gudgeon NH, Leen AM, Tsang CW, Brooks J, Landais E, Houssaint E, Lee SP, Rickinson AB, Taylor GS (2005) CD4+ T-cell responses to Epstein-Barr virus (EBV) latent-cycle antigens and the recognition of EBV-transformed lymphoblastoid cell lines. J Virol 79(8):4896–4907

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Long HM, Leese AM, Chagoury OL, Connerty SR, Quarcoopome J, Quinn LL, Shannon-Lowe C, Rickinson AB (2011) Cytotoxic CD4+ T cell responses to EBV contrast with CD8 responses in breadth of lytic cycle antigen choice and in lytic cycle recognition. J Immunol 187(1):92–101

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Long HM, Zuo J, Leese AM, Gudgeon NH, Jia H, Taylor GS, Rickinson AB (2009) CD4+ T-cell clones recognizing human lymphoma-associated antigens: generation by in vitro stimulation with autologous Epstein-Barr virus-transformed B cells. Blood 114(4):807–815

    Article  CAS  PubMed  Google Scholar 

  • Lopez-Granados E, Stacey M, Kienzler AK, Sierro S, Willberg CB, Fox CP, Rigaud S, Long HM, Hislop AD, Rickinson AB, Patel S, Latour S, Klenerman P, Chapel H (2014) A mutation in XIAP (G466X) leads to memory inflation of EBV-specific T cells. Clin Exp Immunol 178:470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Louis CU, Straathof K, Bollard CM, Ennamuri S, Gerken C, Lopez TT, Huls MH, Sheehan A, Wu MF, Liu H, Gee A, Brenner MK, Rooney CM, Heslop HE, Gottschalk S (2010) Adoptive transfer of EBV-specific T cells results in sustained clinical responses in patients with locoregional nasopharyngeal carcinoma. J Immunother 33(9):983–990

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mackay LK, Long HM, Brooks JM, Taylor GS, Leung CS, Chen A, Wang F, Rickinson AB (2009) T cell detection of a B-cell tropic virus infection: newly-synthesised versus mature viral proteins as antigen sources for CD4 and CD8 epitope display. PLoS Pathog 5(12):e1000699

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Maini MK, Gudgeon N, Wedderburn LR, Rickinson AB, Beverley PC (2000) Clonal expansions in acute EBV infection are detectable in the CD8 and not the CD4 subset and persist with a variable CD45 phenotype. J Immunol 165(10):5729–5737

    Article  CAS  PubMed  Google Scholar 

  • Marshall NA, Christie LE, Munro LR, Culligan DJ, Johnston PW, Barker RN, Vickers MA (2004) Immunosuppressive regulatory T cells are abundant in the reactive lymphocytes of Hodgkin lymphoma. Blood 103(5):1755–1762

    Article  CAS  PubMed  Google Scholar 

  • Martorelli D, Houali K, Caggiari L, Vaccher E, Barzan L, Franchin G, Gloghini A, Pavan A, Da Ponte A, Tedeschi RM, De Re V, Carbone A, Ooka T, De Paoli P, Dolcetti R (2008) Spontaneous T cell responses to Epstein-Barr virus-encoded BARF1 protein and derived peptides in patients with nasopharyngeal carcinoma: bases for improved immunotherapy. Int J Cancer 123(5):1100–1107

    Article  CAS  PubMed  Google Scholar 

  • Mautner J, Pich D, Nimmerjahn F, Milosevic S, Adhikary D, Christoph H, Witter K, Bornkamm GW, Hammerschmidt W, Behrends U (2004) Epstein-Barr virus nuclear antigen 1 evades direct immune recognition by CD4+ T helper cells. Eur J Immunol 34(9):2500–2509

    Article  CAS  PubMed  Google Scholar 

  • McAulay KA, Higgins CD, Macsween KF, Lake A, Jarrett RF, Robertson FL, Williams H, Crawford DH (2007) HLA class I polymorphisms are associated with development of infectious mononucleosis upon primary EBV infection. J Clin Invest 117(10):3042–3048

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Moormann AM, Chelimo K, Sumba OP, Lutzke ML, Ploutz-Snyder R, Newton D, Kazura J, Rochford R (2005) Exposure to holoendemic malaria results in elevated Epstein-Barr virus loads in children. J Infect Dis 191(8):1233–1238

    Article  PubMed  Google Scholar 

  • Moormann AM, Chelimo K, Sumba PO, Tisch DJ, Rochford R, Kazura JW (2007) Exposure to holoendemic malaria results in suppression of Epstein-Barr virus-specific T cell immunosurveillance in Kenyan children. J Infect Dis 195(6):799–808

    Article  CAS  PubMed  Google Scholar 

  • Moormann AM, Heller KN, Chelimo K, Embury P, Ploutz-Snyder R, Otieno JA, Oduor M, Munz C, Rochford R (2009) Children with endemic Burkitt lymphoma are deficient in EBNA1-specific IFN-gamma T cell responses. Int J Cancer 124(7):1721–1726

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Morales O, Mrizak D, Francois V, Mustapha R, Miroux C, Depil S, Decouvelaere AV, Lionne-Huyghe P, Auriault C, de Launoit Y, Pancre V, Delhem N (2014) Epstein-Barr virus infection induces an increase of T regulatory type 1 cells in Hodgkin lymphoma patients. Br J Haematol 166(6):875–890

    Article  CAS  PubMed  Google Scholar 

  • Moss DJ, Bishop CJ, Burrows SR, Ryan JM (1985) T lymphocytes in infectious mononucleosis. I. T cell death in vitro. Clin Exp Immunol 60(1):61–69

    PubMed Central  CAS  PubMed  Google Scholar 

  • Moss DJ, Burrows SR, Castelino DJ, Kane RG, Pope JH, Rickinson AB, Alpers MP, Heywood PF (1983) A comparison of Epstein-Barr virus-specific T-cell immunity in malaria-endemic and -nonendemic regions of Papua New Guinea. Int J Cancer 31(6):727–732

    Article  CAS  PubMed  Google Scholar 

  • Munz C, Bickham KL, Subklewe M, Tsang ML, Chahroudi A, Kurilla MG, Zhang D, O’Donnell M, Steinman RM (2000) Human CD4(+) T lymphocytes consistently respond to the latent Epstein-Barr virus nuclear antigen EBNA1. J Exp Med 191(10):1649–1660

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Murray PG, Constandinou CM, Crocker J, Young LS, Ambinder RF (1998) Analysis of major histocompatibility complex class I, TAP expression, and LMP2 epitope sequence in Epstein-Barr virus-positive Hodgkin’s disease. Blood 92(7):2477–2483

    CAS  PubMed  Google Scholar 

  • Nguyen-Van D, Keane C, Han E, Jones K, Nourse JP, Vari F, Ross N, Crooks P, Ramuz O, Green M, Griffith L, Trappe R, Grigg A, Mollee P, Gandhi MK (2011) Epstein-Barr virus-positive diffuse large B-cell lymphoma of the elderly expresses EBNA3A with conserved CD8 T-cell epitopes. Am J Blood Res 1(2):146–159

    PubMed Central  CAS  PubMed  Google Scholar 

  • Nichols KE, Hom J, Gong SY, Ganguly A, Ma CS, Cannons JL, Tangye SG, Schwartzberg PL, Koretzky GA, Stein PL (2005) Regulation of NKT cell development by SAP, the protein defective in XLP. Nat Med 11(3):340–345

    Article  CAS  PubMed  Google Scholar 

  • Niens M, Jarrett RF, Hepkema B, Nolte IM, Diepstra A, Platteel M, Kouprie N, Delury CP, Gallagher A, Visser L, Poppema S, te Meerman GJ, van den Berg A (2007) HLA-A*02 is associated with a reduced risk and HLA-A*01 with an increased risk of developing EBV+ Hodgkin lymphoma. Blood 110(9):3310–3315

    Article  CAS  PubMed  Google Scholar 

  • Odumade OA, Knight JA, Schmeling DO, Masopust D, Balfour HH Jr, Hogquist KA (2012) Primary Epstein-Barr virus infection does not erode preexisting CD8(+) T cell memory in humans. J Exp Med 209(3):471–478

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Omiya R, Buteau C, Kobayashi H, Paya CV, Celis E (2002) Inhibition of EBV-induced lymphoproliferation by CD4(+) T cells specific for an MHC class II promiscuous epitope. J Immunol 169(4):2172–2179

    Article  CAS  PubMed  Google Scholar 

  • Orlova N, Wang F, Fogg MH (2011) Persistent infection drives the development of CD8+ T cells specific for late lytic infection antigens in lymphocryptovirus-infected macaques and Epstein-Barr virus-infected humans. J Virol 85(23):12821–12824

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Palendira U, Chinn R, Raza W, Piper K, Pratt G, Machado L, Bell A, Khan N, Hislop AD, Steyn R, Rickinson AB, Buckley CD, Moss P (2008) Selective accumulation of virus-specific CD8+ T cells with unique homing phenotype within the human bone marrow. Blood 112(8):3293–3302

    Article  CAS  PubMed  Google Scholar 

  • Paludan C, Bickham K, Nikiforow S, Tsang ML, Goodman K, Hanekom WA, Fonteneau JF, Stevanovic S, Munz C (2002) Epstein-Barr nuclear antigen 1-specific CD4(+) Th1 cells kill Burkitt’s lymphoma cells. J Immunol 169(3):1593–1603

    Article  CAS  PubMed  Google Scholar 

  • Paludan C, Schmid D, Landthaler M, Vockerodt M, Kube D, Tuschl T, Munz C (2005) Endogenous MHC class II processing of a viral nuclear antigen after autophagy. Science 307(5709):593–596

    Article  CAS  PubMed  Google Scholar 

  • Pardoll DM (2012) The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer 12(4):252–264

    Article  CAS  PubMed  Google Scholar 

  • Parsonage G, Machado LR, Hui JW, McLarnon A, Schmaler T, Balasothy M, To KF, Vlantis AC, van Hasselt CA, Lo KW, Wong WL, Hui EP, Chan AT, Lee SP (2012) CXCR6 and CCR5 localize T lymphocyte subsets in nasopharyngeal carcinoma. Am J Pathol 180(3):1215–1222

    Article  CAS  PubMed  Google Scholar 

  • Piriou E, van Dort K, Nanlohy NM, van Oers MH, Miedema F, van Baarle D (2005) Loss of EBNA1-specific memory CD4+ and CD8+ T cells in HIV-infected patients progressing to AIDS-related non-Hodgkin lymphoma. Blood 106(9):3166–3174

    Article  CAS  PubMed  Google Scholar 

  • Precopio ML, Sullivan JL, Willard C, Somasundaran M, Luzuriaga K (2003) Differential kinetics and specificity of EBV-specific CD4+ and CD8+ T cells during primary infection. J Immunol 170(5):2590–2598

    Article  CAS  PubMed  Google Scholar 

  • Pudney VA, Leese AM, Rickinson AB, Hislop AD (2005) CD8+ immunodominance among Epstein-Barr virus lytic cycle antigens directly reflects the efficiency of antigen presentation in lytically infected cells. J Exp Med 201(3):349–360

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rajnavolgyi E, Nagy N, Thuresson B, Dosztanyi Z, Simon A, Simon I, Karr RW, Ernberg I, Klein E, Falk KI (2000) A repetitive sequence of Epstein-Barr virus nuclear antigen 6 comprises overlapping T cell epitopes which induce HLA-DR-restricted CD4(+) T lymphocytes. Int Immunol 12(3):281–293

    Article  CAS  PubMed  Google Scholar 

  • Remmerswaal EB, Havenith SH, Idu MM, van Leeuwen EM, van Donselaar KA, Ten Brinke A, van der Bom-Baylon N, Bemelman FJ, van Lier RA, Ten Berge IJ (2012) Human virus-specific effector-type T cells accumulate in blood but not in lymph nodes. Blood 119(7):1702–1712

    Article  CAS  PubMed  Google Scholar 

  • Rigaud S, Fondaneche MC, Lambert N, Pasquier B, Mateo V, Soulas P, Galicier L, Le Deist F, Rieux-Laucat F, Revy P, Fischer A, de Saint Basile G, Latour S (2006) XIAP deficiency in humans causes an X-linked lymphoproliferative syndrome. Nature 444(7115):110–114

    Article  CAS  PubMed  Google Scholar 

  • Rooney CM, Smith CA, Ng CY, Loftin S, Li C, Krance RA, Brenner MK, Heslop HE (1995) Use of gene-modified virus-specific T lymphocytes to control Epstein-Barr-virus-related lymphoproliferation. Lancet 345(8941):9–13

    Article  CAS  PubMed  Google Scholar 

  • Rostgaard K, Wohlfahrt J, Hjalgrim H (2014) A genetic basis for infectious mononucleosis: evidence from a family study of hospitalized cases in Denmark. Clin Infect Dis 58(12):1684–1689

    Article  PubMed  Google Scholar 

  • Rowe M, Khanna R, Jacob CA, Argaet V, Kelly A, Powis S, Belich M, Croom-Carter D, Lee S, Burrows SR et al (1995) Restoration of endogenous antigen processing in Burkitt’s lymphoma cells by Epstein-Barr virus latent membrane protein-1: coordinate up-regulation of peptide transporters and HLA-class I antigen expression. Eur J Immunol 25(5):1374–1384

    Article  CAS  PubMed  Google Scholar 

  • Selin LK, Wlodarczyk MF, Kraft AR, Nie S, Kenney LL, Puzone R, Celada F (2011) Heterologous immunity: immunopathology, autoimmunity and protection during viral infections. Autoimmunity 44(4):328–347

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Seto E, Yang L, Middeldorp J, Sheen TS, Chen JY, Fukayama M, Eizuru Y, Ooka T, Takada K (2005) Epstein-Barr virus (EBV)-encoded BARF1 gene is expressed in nasopharyngeal carcinoma and EBV-associated gastric carcinoma tissues in the absence of lytic gene expression. J Med Virol 76(1):82–88

    Article  CAS  PubMed  Google Scholar 

  • Silins SL, Sherritt MA, Silleri JM, Cross SM, Elliott SL, Bharadwaj M, Le TT, Morrison LE, Khanna R, Moss DJ, Suhrbier A, Misko IS (2001) Asymptomatic primary Epstein-Barr virus infection occurs in the absence of blood T-cell repertoire perturbations despite high levels of systemic viral load. Blood 98(13):3739–3744

    Article  CAS  PubMed  Google Scholar 

  • Smith C, Tsang J, Beagley L, Chua D, Lee V, Li V, Moss DJ, Coman W, Chan KH, Nicholls J, Kwong D, Khanna R (2012) Effective treatment of metastatic forms of Epstein-Barr virus-associated nasopharyngeal carcinoma with a novel adenovirus-based adoptive immunotherapy. Cancer Res 72(5):1116–1125

    Article  CAS  PubMed  Google Scholar 

  • Soares MV, Plunkett FJ, Verbeke CS, Cook JE, Faint JM, Belaramani LL, Fletcher JM, Hammerschmitt N, Rustin M, Bergler W, Beverley PC, Salmon M, Akbar AN (2004) Integration of apoptosis and telomere erosion in virus-specific CD8+ T cells from blood and tonsils during primary infection. Blood 103(1):162–167

    Article  CAS  PubMed  Google Scholar 

  • Steven NM, Annels NE, Kumar A, Leese AM, Kurilla MG, Rickinson AB (1997) Immediate early and early lytic cycle proteins are frequent targets of the Epstein-Barr virus-induced cytotoxic T cell response. J Exp Med 185(9):1605–1617

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Steven NM, Leese AM, Annels NE, Lee SP, Rickinson AB (1996) Epitope focusing in the primary cytotoxic T cell response to Epstein-Barr virus and its relationship to T cell memory. J Exp Med 184(5):1801–1813

    Article  CAS  PubMed  Google Scholar 

  • Stevens SJ, Verkuijlen SA, Hariwiyanto B, Harijadi Paramita DK, Fachiroh J, Adham M, Tan IB, Haryana SM, Middeldorp JM (2006) Noninvasive diagnosis of nasopharyngeal carcinoma: nasopharyngeal brushings reveal high Epstein-Barr virus DNA load and carcinoma-specific viral BARF1 mRNA. Int J Cancer 119(3):608–614

    Article  CAS  PubMed  Google Scholar 

  • Stowe RP, Kozlova EV, Yetman DL, Walling DM, Goodwin JS, Glaser R (2007) Chronic herpesvirus reactivation occurs in aging. Exp Gerontol 42(6):563–570

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Su WH, Hildesheim A, Chang YS (2013) Human leukocyte antigens and epstein-barr virus-associated nasopharyngeal carcinoma: old associations offer new clues into the role of immunity in infection-associated cancers. Front Oncol 3:299

    Article  PubMed Central  PubMed  Google Scholar 

  • Sun Q, Burton R, Reddy V, Lucas KG (2002a) Safety of allogeneic Epstein-Barr virus (EBV)-specific cytotoxic T lymphocytes for patients with refractory EBV-related lymphoma. Br J Haematol 118(3):799–808

    Article  PubMed  Google Scholar 

  • Sun Q, Burton RL, Lucas KG (2002b) Cytokine production and cytolytic mechanism of CD4(+) cytotoxic T lymphocytes in ex vivo expanded therapeutic Epstein-Barr virus-specific T-cell cultures. Blood 99(9):3302–3309

    Article  CAS  PubMed  Google Scholar 

  • Tangye SG (2014) XLP: clinical features and molecular etiology due to mutations in SH2D1A encoding SAP. J Clin Immunol. doi:10.1007/s10875-014-0083-7

    PubMed  Google Scholar 

  • Taylor GS, Jia H, Harrington K, Lee LW, Turner J, Ladell K, Price DA, Tanday M, Matthews J, Roberts C, Edwards C, McGuigan L, Hartley A, Wilson S, Hui EP, Chan AT, Rickinson AB, Steven NM (2014) A recombinant modified vaccinia ankara vaccine encoding Epstein-Barr Virus (EBV) target antigens: a phase I trial in UK patients with EBV-positive cancer. Clin Cancer Res 20(19):5009–5022

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Taylor GS, Long HM, Haigh TA, Larsen M, Brooks J, Rickinson AB (2006) A role for intercellular antigen transfer in the recognition of EBV-transformed B cell lines by EBV nuclear antigen-specific CD4+ T cells. J Immunol 177(6):3746–3756

    Article  CAS  PubMed  Google Scholar 

  • Tellam J, Connolly G, Green KJ, Miles JJ, Moss DJ, Burrows SR, Khanna R (2004) Endogenous presentation of CD8+ T cell epitopes from Epstein-Barr virus-encoded nuclear antigen 1. J Exp Med 199(10):1421–1431

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Vantourout P, Hayday A (2013) A six-of-the-best: unique contributions of gammadelta T cells to immunology. Nat Rev Immunol 13(2):88–100

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Vescovini R, Telera A, Fagnoni FF, Biasini C, Medici MC, Valcavi P, di Pede P, Lucchini G, Zanlari L, Passeri G, Zanni F, Chezzi C, Franceschi C, Sansoni P (2004) Different contribution of EBV and CMV infections in very long-term carriers to age-related alterations of CD8+ T cells. Exp Gerontol 39(8):1233–1243

    Article  PubMed  Google Scholar 

  • Voo KS, Fu T, Wang HY, Tellam J, Heslop HE, Brenner MK, Rooney CM, Wang RF (2004) Evidence for the presentation of major histocompatibility complex class I-restricted Epstein-Barr virus nuclear antigen 1 peptides to CD8+ T lymphocytes. J Exp Med 199(4):459–470

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • White CA, Cross SM, Kurilla MG, Kerr BM, Schmidt C, Misko IS, Khanna R, Moss DJ (1996) Recruitment during infectious mononucleosis of CD3+ CD4+ CD8+ virus-specific cytotoxic T cells which recognise Epstein-Barr virus lytic antigen BHRF1. Virology 219(2):489–492

    Article  CAS  PubMed  Google Scholar 

  • Whittle HC, Brown J, Marsh K, Greenwood BM, Seidelin P, Tighe H, Wedderburn L (1984) T-cell control of Epstein-Barr virus-infected B cells is lost during P. falciparum malaria. Nature 312(5993):449–450

    Article  CAS  PubMed  Google Scholar 

  • Wingate PJ, McAulay KA, Anthony IC, Crawford DH (2009) Regulatory T cell activity in primary and persistent Epstein-Barr virus infection. J Med Virol 81(5):870–877

    Article  CAS  PubMed  Google Scholar 

  • Wolchok JD, Kluger H, Callahan MK, Postow MA, Rizvi NA, Lesokhin AM, Segal NH, Ariyan CE, Gordon RA, Reed K, Burke MM, Caldwell A, Kronenberg SA, Agunwamba BU, Zhang X, Lowy I, Inzunza HD, Feely W, Horak CE, Hong Q, Korman AJ, Wigginton JM, Gupta A, Sznol M (2013) Nivolumab plus ipilimumab in advanced melanoma. N Engl J Med 369(2):122–133

    Article  CAS  PubMed  Google Scholar 

  • Woodberry T, Suscovich TJ, Henry LM, August M, Waring MT, Kaur A, Hess C, Kutok JL, Aster JC, Wang F, Scadden DT, Brander C (2005a) Alpha E beta 7 (CD103) expression identifies a highly active, tonsil-resident effector-memory CTL population. J Immunol 175(7):4355–4362

    Article  CAS  PubMed  Google Scholar 

  • Woodberry T, Suscovich TJ, Henry LM, Davis JK, Frahm N, Walker BD, Scadden DT, Wang F, Brander C (2005b) Differential targeting and shifts in the immunodominance of Epstein-Barr virus–specific CD8 and CD4 T cell responses during acute and persistent infection. J Infect Dis 192(9):1513–1524

    Article  CAS  PubMed  Google Scholar 

  • Xiang Z, Liu Y, Zheng J, Liu M, Lv A, Gao Y, Hu H, Lam KT, Chan GC, Yang Y, Chen H, Tsao GS, Bonneville M, Lau YL, Tu W (2014) Targeted activation of human Vgamma9Vdelta2-T cells controls Epstein-Barr virus-induced B cell lymphoproliferative disease. Cancer Cell 26(4):565–576

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto R, Nishikori M, Kitawaki T, Sakai T, Hishizawa M, Tashima M, Kondo T, Ohmori K, Kurata M, Hayashi T, Uchiyama T (2008) PD-1–PD-1 ligand interaction contributes to immunosuppressive microenvironment of Hodgkin lymphoma. Blood 111(6):3220–3224

    Article  CAS  PubMed  Google Scholar 

  • Yao Y, Minter HA, Chen X, Reynolds GM, Bromley M, Arrand JR (2000) Heterogeneity of HLA and EBER expression in Epstein-Barr virus-associated nasopharyngeal carcinoma. Int J Cancer 88(6):949–955

    Article  CAS  PubMed  Google Scholar 

  • Yip WK, Abdullah MA, Yusoff SM, Seow HF (2009) Increase in tumour-infiltrating lymphocytes with regulatory T cell immunophenotypes and reduced zeta-chain expression in nasopharyngeal carcinoma patients. Clin Exp Immunol 155(3):412–422

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yuling H, Ruijing X, Li L, Xiang J, Rui Z, Yujuan W, Lijun Z, Chunxian D, Xinti T, Wei X, Lang C, Yanping J, Tao X, Mengjun W, Jie X, Youxin J, Jinquan T (2009) EBV-induced human CD8+ NKT cells suppress tumorigenesis by EBV-associated malignancies. Cancer Res 69(20):7935–7944

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Andrew D. Hislop or Graham S. Taylor .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Hislop, A.D., Taylor, G.S. (2015). T-Cell Responses to EBV. In: Münz, C. (eds) Epstein Barr Virus Volume 2. Current Topics in Microbiology and Immunology, vol 391. Springer, Cham. https://doi.org/10.1007/978-3-319-22834-1_11

Download citation

Publish with us

Policies and ethics