Skip to main content

Burkitt’s Lymphoma

  • Chapter
  • First Online:

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 390))

Abstract

Endemic Burkitt’s lymphoma (BL) remains the most prevalent pediatric cancer in sub-Saharan Africa even though it was the first human cancer with a viral etiology described over 50 years ago. Epstein–Barr virus (EBV) was discovered in a BL tumor in 1964 and has since been implicated in other malignancies. The etiology of endemic BL has been linked to EBV and Plasmodium falciparum malaria co-infection. While epidemiologic studies have yielded insight into EBV infection and the etiology of endemic BL, the modulation of viral persistence in children by malaria and deficits in EBV immunosurveillance has more recently been reified. Renewed efforts to design prophylactic and therapeutic EBV vaccines provide hope of preventing EBV-associated BL as well as increasing the ability to cure this cancer.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Asito AS, Moormann AM, Kiprotich C, Ng’ang’a ZW, Ploutz-Snyder R et al (2008) Alterations on peripheral B cell subsets following an acute uncomplicated clinical malaria infection in children. Malar J 7:238

    Article  PubMed Central  PubMed  Google Scholar 

  • Asito AS, Piriou E, Odada PS, Fiore N, Middeldorp JM et al (2010) Elevated anti-Zta IgG levels and EBV viral load are associated with site of tumor presentation in endemic Burkitt’s lymphoma patients: a case control study. Infect Agent Cancer 5:13

    Article  PubMed Central  PubMed  Google Scholar 

  • Aya T, Kinoshita T, Imai S, Koizumi S, Mizuno F et al (1991) Chromosome translocation and c-MYC activation by Epstein-Barr virus and Euphorbia tirucalli in B lymphocytes. Lancet 337:1190

    Article  CAS  PubMed  Google Scholar 

  • Balfour HH Jr (2014) Progress, prospects, and problems in Epstein-Barr virus vaccine development. Curr Opin Virol 6C:1–5

    Article  Google Scholar 

  • Balfour HH Jr, Sifakis F, Sliman JA, Knight JA, Schmeling DO et al (2013) Age-specific prevalence of Epstein-Barr virus infection among individuals aged 6–19 years in the United States and factors affecting its acquisition. J Infect Dis 208:1286–1293

    Article  PubMed  Google Scholar 

  • Biggar RJ, Nkrumah FK (1979) Burkitt’s lymphoma in Ghana: urban-rural distribution, time-space clustering and seasonality. Int J Cancer 23:330–336

    Article  CAS  PubMed  Google Scholar 

  • Biggar RJ, Gardiner C, Lennette ET, Collins WE, Nkrumah FK et al (1981) Malaria, sex, and place of residence as factors in antibody response to Epstein-Barr virus in Ghana, West Africa. Lancet 2:115–118

    Article  CAS  PubMed  Google Scholar 

  • Burkitt D (1958) A sarcoma involving the jaws in African children. Br J Surg 46:218–223

    Article  CAS  PubMed  Google Scholar 

  • Burkitt D (1962a) Determining the climatic limitations of a children’s cancer common in Africa. Br Med J 2:1019–1023

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Burkitt D (1962b) A “tumour safari” in East and Central Africa. Br J Cancer 16:379–386

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Burkitt D (1962c) A children’s cancer dependent on climatic factors. Nature 194:232–234

    Article  CAS  PubMed  Google Scholar 

  • Burkitt DP (1969) Etiology of Burkitt’s lymphoma–an alternative hypothesis to a vectored virus. J Natl Cancer Inst 42:19–28

    CAS  PubMed  Google Scholar 

  • Burkitt D, O’Conor GT (1961) Malignant lymphoma in African children. I. A clinical syndrome. Cancer 14:258–269

    CAS  PubMed  Google Scholar 

  • Burkitt D, Wright D (1966) Geographical and tribal distribution of the African lymphoma in Uganda. Br Med J 1:569–573

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Carpenter LM, Newton R, Casabonne D, Ziegler J, Mbulaiteye S et al (2008) Antibodies against malaria and Epstein-Barr virus in childhood Burkitt lymphoma: a case-control study in Uganda. Int J Cancer 122:1319–1323

    Article  CAS  PubMed  Google Scholar 

  • Chattopadhyay PK, Chelimo K, Embury PB, Mulama DH, Sumba PO et al (2013) Holoendemic malaria exposure is associated with altered Epstein-Barr virus-specific CD8(+) T-cell differentiation. J Virol 87:1779–1788

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chene A, Donati D, Guerreiro-Cacais AO, Levitsky V, Chen Q et al (2007) A molecular link between malaria and Epstein-Barr virus reactivation. PLoS Pathog 3:e80

    Article  PubMed Central  PubMed  Google Scholar 

  • Cohen JI, Mocarski ES, Raab-Traub N, Corey L, Nabel GJ (2013) The need and challenges for development of an Epstein-Barr virus vaccine. Vaccine 31(Suppl 2):B194–B196

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Crawford DH (2001) Biology and disease associations of Epstein-Barr virus. Philos Trans R Soc Lond B Biol Sci 356:461–473

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dalla-Favera R, Bregni M, Erikson J, Patterson D, Gallo RC et al (1982) Human c-myc onc gene is located on the region of chromosome 8 that is translocated in Burkitt lymphoma cells. Proc Natl Acad Sci USA 79:7824–7827

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dalldorf G, Linsell CA, Barnhart FE, Martyn R (1964) An epidemiologic approach to the lymphomas of African children and Burkitt’s sacroma of the jaws. Perspect Biol Med 7:435–449

    Article  CAS  PubMed  Google Scholar 

  • de-The G (1977) Is Burkitt’s lymphoma related to perinatal infection by Epstein-Barr virus? Lancet 1:335–338

    Google Scholar 

  • de-The G, Geser A, Day NE, Tukei PM, Williams EH et al (1978) Epidemiological evidence for causal relationship between Epstein-Barr virus and Burkitt’s lymphoma from Ugandan prospective study. Nature 274:756–761

    Google Scholar 

  • Donati D, Espmark E, Kironde F, Mbidde EK, Kamya M et al (2006) Clearance of circulating Epstein-Barr virus DNA in children with acute malaria after antimalaria treatment. J Infect Dis 193:971–977

    Article  CAS  PubMed  Google Scholar 

  • Epstein MA, Achong BG, Barr YM (1964) Virus particles in cultured lymphoblasts from Burkitt’s lymphoma. Lancet 1:702–703

    Article  CAS  PubMed  Google Scholar 

  • Fachiroh J, Paramita DK, Hariwiyanto B, Harijadi A, Dahlia HL et al (2006) Single-assay combination of Epstein-Barr Virus (EBV) EBNA1- and viral capsid antigen-p18-derived synthetic peptides for measuring anti-EBV immunoglobulin G (IgG) and IgA antibody levels in sera from nasopharyngeal carcinoma patients: options for field screening. J Clin Microbiol 44:1459–1467

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fakunle YM, Greenwood BM (1976) A suppressor T-cell defect in tropical splenomegaly syndrome. Lancet 2:608–609

    Article  CAS  PubMed  Google Scholar 

  • Geser A, Brubaker G (1985) A preliminary report of epidemiological studies of Burkitt’s lymphoma, Epstein-Barr virus infection and malaria in North Mara, Tanzania. IARC Sci Publ:205–215

    Google Scholar 

  • Geser A, Brubaker G, Draper CC (1989) Effect of a malaria suppression program on the incidence of African Burkitt’s lymphoma. Am J Epidemiol 129:740–752

    CAS  PubMed  Google Scholar 

  • Greenwood BM, Bradley-Moore AM, Bryceson AD, Palit A (1972) Immunosuppression in children with malaria. Lancet 1:169–172

    Article  CAS  PubMed  Google Scholar 

  • Gruhne B, Sompallae R, Marescotti D, Kamranvar SA, Gastaldello S et al (2009) The Epstein-Barr virus nuclear antigen-1 promotes genomic instability via induction of reactive oxygen species. Proc Natl Acad Sci U S A 106:2313–2318

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Haddow AJ (1963) An improved map for the study of Burkitt’s lymphoma syndrome in Africa. East Afr Med J 40:429–432

    CAS  PubMed  Google Scholar 

  • Haddow AJ (1964) Age incidence in Burkitt’s lymphoma syndrome. East Afr Med J 41:1–6

    CAS  PubMed  Google Scholar 

  • Heath E, Begue-Pastor N, Chaganti S, Croom-Carter D, Shannon-Lowe C et al (2012) Epstein-Barr virus infection of naive B cells in vitro frequently selects clones with mutated immunoglobulin genotypes: implications for virus biology. PLoS Pathog 8:e1002697

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Heller KN, Upshaw J, Seyoum B, Zebroski H, Munz C (2007) Distinct memory CD4+ T-cell subsets mediate immune recognition of Epstein Barr virus nuclear antigen 1 in healthy virus carriers. Blood 109:1138–1146

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Henle G, Henle W, Clifford P, Diehl V, Kafuko GW et al (1969) Antibodies to Epstein-Barr virus in Burkitt’s lymphoma and control groups. J Natl Cancer Inst 43:1147–1157

    CAS  PubMed  Google Scholar 

  • Ito Y, Kawanishi M, Harayama T, Takabayashi S (1981) Combined effect of the extracts from Croton tiglium, Euphorbia lathyris or Euphorbia tirucalli and n-butyrate on Epstein-Barr virus expression in human lymphoblastoid P3HR-1 and Raji cells. Cancer Lett 12:175–180

    Article  CAS  PubMed  Google Scholar 

  • Kaneda A, Matsusaka K, Aburatani H, Fukayama M (2012) Epstein-Barr virus infection as an epigenetic driver of tumorigenesis. Cancer Res 72:3445–3450

    Article  CAS  PubMed  Google Scholar 

  • Kelly GL, Stylianou J, Rasaiyaah J, Wei W, Thomas W et al (2013) Different patterns of Epstein-Barr virus latency in endemic Burkitt lymphoma (BL) lead to distinct variants within the BL-associated gene expression signature. J Virol 87:2882–2894

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Khanna R, Burrows SR (2000) Role of cytotoxic T lymphocytes in Epstein-Barr virus-associated diseases. Annu Rev Microbiol 54:19–48

    Article  CAS  PubMed  Google Scholar 

  • Labrecque LG, Xue SA, Kazembe P, Phillips J, Lampert I et al (1999) Expression of Epstein-Barr virus lytically related genes in African Burkitt’s lymphoma: correlation with patient response to therapy. Int J Cancer 81:6–11

    Article  CAS  PubMed  Google Scholar 

  • Lam KM, Syed N, Whittle H, Crawford DH (1991) Circulating Epstein-Barr virus-carrying B cells in acute malaria. Lancet 337:876–878

    Article  CAS  PubMed  Google Scholar 

  • Lindahl T, Klein G, Reedman BM, Johansson B, Singh S (1974) Relationship between Epstein-Barr virus (EBV) DNA and the EBV-determined nuclear antigen (EBNA) in Burkitt lymphoma biopsies and other lymphoproliferative malignancies. Int J Cancer 13:764–772

    Article  CAS  PubMed  Google Scholar 

  • MacNeil A, Sumba OP, Lutzke ML, Moormann A, Rochford R (2003) Activation of the Epstein-Barr virus lytic cycle by the latex of the plant Euphorbia tirucalli. Br J Cancer 88:1566–1569

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mannucci S, Luzzi A, Carugi A, Gozzetti A, Lazzi S et al (2012) EBV reactivation and chromosomal polysomies: euphorbia tirucalli as a possible cofactor in endemic Burkitt lymphoma. Adv Hematol 2012:149780

    PubMed Central  PubMed  Google Scholar 

  • Mizuno F, Koizumi S, Osato T, Kokwaro JO, Ito Y (1983) Chinese and African Euphorbiaceae plant extracts: markedly enhancing effect on Epstein-Barr virus-induced transformation. Cancer Lett 19:199–205

    Article  CAS  PubMed  Google Scholar 

  • Moormann AM, Chelimo K, Sumba OP, Lutzke ML, Ploutz-Snyder R et al (2005) Exposure to holoendemic malaria results in elevated Epstein-Barr virus loads in children. J Infect Dis 191:1233–1238

    Article  PubMed  Google Scholar 

  • Moormann AM, Chelimo K, Sumba PO, Tisch DJ, Rochford R et al (2007) Exposure to holoendemic malaria results in suppression of Epstein-Barr virus-specific T cell immunosurveillance in Kenyan children. J Infect Dis 195:799–808

    Article  CAS  PubMed  Google Scholar 

  • Moormann AM, Heller KN, Chelimo K, Embury P, Ploutz-Snyder R et al (2009) Children with endemic Burkitt lymphoma are deficient in EBNA1-specific IFN-gamma T cell responses. Int J Cancer 124:1721–1726

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Morrow RH, Pike MC, Smith PG (1977) Further studies of space-time clustering of Burkitt’s lymphoma in Uganda. Br J Cancer 35:668–673

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Moss DJ, Burrows SR, Castelino DJ, Kane RG, Pope JH et al (1983) A comparison of Epstein-Barr virus-specific T-cell immunity in malaria-endemic and -nonendemic regions of Papua New Guinea. Int J Cancer 31:727–732

    Article  CAS  PubMed  Google Scholar 

  • Munz C (2004) Epstein-barr virus nuclear antigen 1: from immunologically invisible to a promising T cell target. J Exp Med 199:1301–1304

    Article  PubMed Central  PubMed  Google Scholar 

  • Muramatsu M, Kinoshita K, Fagarasan S, Yamada S, Shinkai Y et al (2000) Class switch recombination and hypermutation require activation-induced cytidine deaminase (AID), a potential RNA editing enzyme. Cell 102:553–563

    Article  CAS  PubMed  Google Scholar 

  • Mutalima N, Molyneux E, Jaffe H, Kamiza S, Borgstein E et al (2008) Associations between Burkitt lymphoma among children in Malawi and infection with HIV, EBV and malaria: results from a case-control study. PLoS ONE 3:e2505

    Article  PubMed Central  PubMed  Google Scholar 

  • Neparidze N, Lacy J (2014) Malignancies associated with epstein-barr virus: pathobiology, clinical features, and evolving treatments. Clin Adv Hematol Oncol 12:358–371

    PubMed  Google Scholar 

  • Neri A, Barriga F, Inghirami G, Knowles DM, Neequaye J et al (1991) Epstein-Barr virus infection precedes clonal expansion in Burkitt’s and acquired immunodeficiency syndrome-associated lymphoma. Blood 77:1092–1095

    CAS  PubMed  Google Scholar 

  • Njie R, Bell AI, Jia H, Croom-Carter D, Chaganti S et al (2009) The effects of acute malaria on Epstein-Barr virus (EBV) load and EBV-specific T cell immunity in Gambian children. J Infect Dis 199:31–38

    Article  PubMed  Google Scholar 

  • Orem J, Sandin S, Mbidde E, Mangen FW, Middeldorp J et al (2014) Epstein-Barr virus viral load and serology in childhood non-Hodgkin’s lymphoma and chronic inflammatory conditions in Uganda: implications for disease risk and characteristics. J Med Virol 86:1796–1803

    Article  CAS  PubMed  Google Scholar 

  • Osato T, Mizuno F, Imai S, Aya T, Koizumi S et al (1987) African Burkitt’s lymphoma and an Epstein-Barr virus-enhancing plant Euphorbia tirucalli. Lancet 1:1257–1258

    Article  CAS  PubMed  Google Scholar 

  • Osato T, Imai S, Kinoshita T, Aya T, Sugiura M et al (1990) Epstein-Barr virus, Burkitt’s lymphoma, and an African tumor promoter. Adv Exp Med Biol 278:147–150

    Article  CAS  PubMed  Google Scholar 

  • Parroche P, Lauw FN, Goutagny N, Latz E, Monks BG et al (2007) Malaria hemozoin is immunologically inert but radically enhances innate responses by presenting malaria DNA to Toll-like receptor 9. Proc Natl Acad Sci USA 104:1919–1924

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Piriou E, Kimmel R, Chelimo K, Middeldorp JM, Odada PS et al (2009) Serological evidence for long-term Epstein-Barr virus reactivation in children living in a holoendemic malaria region of Kenya. J Med Virol 81:1088–1093

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Piriou E, Asito AS, Sumba PO, Fiore N, Middeldorp JM et al (2012) Early age at time of primary Epstein-Barr virus infection results in poorly controlled viral infection in infants from Western Kenya: clues to the etiology of endemic Burkitt lymphoma. J Infect Dis 205:906–913

    Article  PubMed Central  PubMed  Google Scholar 

  • Portugal S, Doumtabe D, Traore B, Miller LH, Troye-Blomberg M et al (2012) B cell analysis of ethnic groups in Mali with differential susceptibility to malaria. Malar J 11:162

    Article  PubMed Central  PubMed  Google Scholar 

  • Potup P, Kumsiri R, Kano S, Kalambaheti T, Looareesuwan S et al (2009) Blood stage Plasmodium falciparum antigens induce immunoglobulin class switching in human enriched B cell culture. Southeast Asian J Trop Med Public Health 40:651–664

    CAS  PubMed  Google Scholar 

  • Rainey JJ, Omenah D, Sumba PO, Moormann AM, Rochford R et al (2007) Spatial clustering of endemic Burkitt’s lymphoma in high-risk regions of Kenya. Int J Cancer 120:121–127

    Article  CAS  PubMed  Google Scholar 

  • Ramiro AR, Jankovic M, Eisenreich T, Difilippantonio S, Chen-Kiang S et al (2004) AID is required for c-myc/IgH chromosome translocations in vivo. Cell 118:431–438

    Article  CAS  PubMed  Google Scholar 

  • Ramiro AR, Jankovic M, Callen E, Difilippantonio S, Chen HT et al (2006) Role of genomic instability and p53 in AID-induced c-myc-Igh translocations. Nature 440:105–109

    Article  CAS  PubMed  Google Scholar 

  • Rasti N, Falk KI, Donati D, Gyan BA, Goka BQ et al (2005) Circulating epstein-barr virus in children living in malaria-endemic areas. Scand J Immunol 61:461–465

    Article  CAS  PubMed  Google Scholar 

  • Rickinson AB, Murray RJ, Brooks J, Griffin H, Moss DJ et al (1992) T cell recognition of Epstein-Barr virus associated lymphomas. Cancer Surv 13:53–80

    CAS  PubMed  Google Scholar 

  • Rickinson AB, Long HM, Palendira U, Munz C, Hislop AD (2014) Cellular immune controls over Epstein-Barr virus infection: new lessons from the clinic and the laboratory. Trends Immunol 35:159–169

    Article  CAS  PubMed  Google Scholar 

  • Riley EM, Stewart VA (2013) Immune mechanisms in malaria: new insights in vaccine development. Nat Med 19:168–178

    Article  CAS  PubMed  Google Scholar 

  • Robbiani DF, Bothmer A, Callen E, Reina-San-Martin B, Dorsett Y et al (2008) AID is required for the chromosomal breaks in c-myc that lead to c-myc/IgH translocations. Cell 135:1028–1038

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ruf IK, Rhyne PW, Yang H, Borza CM, Hutt-Fletcher LM et al (2001) EBV regulates c-MYC, apoptosis, and tumorigenicity in Burkitt’s lymphoma. Curr Top Microbiol Immunol 258:153–160

    CAS  PubMed  Google Scholar 

  • Siemiatycki J, Brubaker G, Geser A (1980) Space-time clustering of Burkitt’s lymphoma in East Africa: analysis of recent data and a new look at old data. Int J Cancer 25:197–203

    Article  CAS  PubMed  Google Scholar 

  • Singh S, Kennedy MC, Long CA, Saul AJ, Miller LH et al (2003) Biochemical and immunological characterization of bacterially expressed and refolded Plasmodium falciparum 42-kilodalton C-terminal merozoite surface protein 1. Infect Immun 71:6766–6774

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Snider CJ, Cole SR, Chelimo K, Sumba PO, Macdonald PD et al (2012) Recurrent Plasmodium falciparum malaria infections in Kenyan children diminish T-cell immunity to Epstein Barr virus lytic but not latent antigens. PLoS ONE 7:e31753

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sulzer AJ, Wilson M, Hall EC (1969) Indirect fluorescent-antibody tests for parasitic diseases. V. An evaluation of a thick-smear antigen in the IFA test for malaria antibodies. Am J Trop Med Hyg 18:199–205

    CAS  PubMed  Google Scholar 

  • Sumba PO, Kabiru EW, Namuyenga E, Fiore N, Otieno RO et al (2010) Microgeographic variations in Burkitt’s lymphoma incidence correlate with differences in malnutrition, malaria and Epstein-Barr virus. Br J Cancer 103:1736–1741

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tao Q, Robertson KD, Manns A, Hildesheim A, Ambinder RF (1998) Epstein-Barr virus (EBV) in endemic Burkitt’s lymphoma: molecular analysis of primary tumor tissue. Blood 91:1373–1381

    CAS  PubMed  Google Scholar 

  • Ten Seldam RE, Cooke R, Atkinson L (1966) Childhood Lymphoma in the territories of papua and new guinea. Cancer 19:437–446

    Article  Google Scholar 

  • Torgbor C, Awuah P, Deitsch K, Kalantari P, Duca KA et al (2014) A multifactorial role for P. falciparum malaria in endemic Burkitt’s lymphoma pathogenesis. PLoS Pathog 10:e1004170

    Article  PubMed Central  PubMed  Google Scholar 

  • van den Bosch C, Lloyd G (2000) Chikungunya fever as a risk factor for endemic Burkitt’s lymphoma in Malawi. Trans R Soc Trop Med Hyg 94:704–705

    Article  PubMed  Google Scholar 

  • van den Bosch C, Griffin BE, Kazembe P, Dziweni C, Kadzamira L (1993) Are plant factors a missing link in the evolution of endemic Burkitt’s lymphoma? Br J Cancer 68:1232–1235

    Article  PubMed Central  PubMed  Google Scholar 

  • Verra F, Simpore J, Warimwe GM, Tetteh KK, Howard T et al (2007) Haemoglobin C and S role in acquired immunity against Plasmodium falciparum malaria. PLoS ONE 2:e978

    Article  PubMed Central  PubMed  Google Scholar 

  • Wei F, Zhong S, Ma Z, Kong H, Medvec A et al (2013) Strength of PD-1 signaling differentially affects T-cell effector functions. Proc Natl Acad Sci USA 110:E2480–E2489

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Weiss GE, Crompton PD, Li S, Walsh LA, Moir S et al (2009) Atypical memory B cells are greatly expanded in individuals living in a malaria-endemic area. J Immunol 183:2176–2182

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Whittle HC, Brown J, Marsh K, Greenwood BM, Seidelin P et al (1984) T-cell control of Epstein-Barr virus-infected B cells is lost during P. falciparum malaria. Nature 312:449–450

    Article  CAS  PubMed  Google Scholar 

  • Williamson WA, Greenwood BM (1978) Impairment of the immune response to vaccination after acute malaria. Lancet 1:1328–1329

    Article  CAS  PubMed  Google Scholar 

  • Wilmore JR, Asito AS, Wei C, Piriou E, Sumba PO et al (2014) AID expression in peripheral blood of children living in a malaria holoendemic region is associated with changes in B cell subsets and Epstein-Barr virus. Int J Cancer

    Google Scholar 

  • Wilson JB, Bell JL, Levine AJ (1996) Expression of Epstein-Barr virus nuclear antigen-1 induces B cell neoplasia in transgenic mice. EMBO J 15:3117–3126

    PubMed Central  CAS  PubMed  Google Scholar 

  • Xue SA, Labrecque LG, Lu QL, Ong SK, Lampert IA et al (2002) Promiscuous expression of Epstein-Barr virus genes in Burkitt’s lymphoma from the central African country Malawi. Int J Cancer 99:635–643

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto N, zur Hausen H (1979) Tumour promoter TPA enhances transformation of human leukocytes by Epstein-Barr virus. Nature 280:244–245

    Google Scholar 

  • zur Hausen H, Schulte-Holthausen H, Klein G, Henle W, Henle G et al (1970) EBV DNA in biopsies of Burkitt tumours and anaplastic carcinomas of the nasopharynx. Nature 228:1056–1058

    Google Scholar 

  • zur Hausen H, O’Neill FJ, Freese UK, Hecker E (1978) Persisting oncogenic herpesvirus induced by the tumour promotor TPA. Nature 272:373–375

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ann M. Moormann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Rochford, R., Moormann, A.M. (2015). Burkitt’s Lymphoma. In: Münz, C. (eds) Epstein Barr Virus Volume 1. Current Topics in Microbiology and Immunology, vol 390. Springer, Cham. https://doi.org/10.1007/978-3-319-22822-8_11

Download citation

Publish with us

Policies and ethics