Skip to main content

Primary Immunodeficiencies Associated with EBV Disease

  • Chapter
  • First Online:
Epstein Barr Virus Volume 1

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 390))

Abstract

Epstein-Barr virus (EBV) infects nearly all humans and usually is asymptomatic, or in the case of adolescents and young adults, it can result in infectious mononucleosis. EBV-infected B cells are controlled primarily by NK cells, iNKT cells, CD4 T cells, and CD8 T cells. While mutations in proteins important for B cell function can affect EBV infection of these cells, these mutations do not result in severe EBV infection. Some genetic disorders affecting T and NK cell function result in failure to control EBV infection, but do not result in increased susceptibility to other virus infections. These include mutations in SH2D1A, BIRC4, ITK, CD27, MAGT1, CORO1A, and LRBA. Since EBV is the only virus that induces proliferation of B cells, the study of these diseases has helped to identify proteins critical for interactions of T and/or NK cells with B cells. Mutations in three genes associated with hemophagocytic lymphohistocytosis, PRF1, STXBP2, and UNC13D, can also predispose to severe chronic active EBV disease. Severe EBV infection can be associated with immunodeficiencies that also predispose to other viral infections and in some cases other bacterial and fungal infections. These include diseases due to mutations in PIK3CD, PIK3R1, CTPS1, STK4, GATA2, MCM4, FCGR3A, CARD11, ATM, and WAS. In addition, patients with severe combined immunodeficiency, which can be due to mutations in a number of different genes, are at high risk for various infections as well as EBV B cell lymphomas. Identification of proteins important for control of EBV may help to identify new targets for immunosuppressive therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

APDS:

Activated PI3Kδ syndrome

CAEBV:

Chronic active EBV disease

CARD11:

Caspase recruitment domain family, member 11

CTL:

Cytotoxic T lymphocyte

CTPS1:

Cytidine 5′-triphosphate synthase

EBV:

Epstein-Barr virus

FHL:

Familial hemophagocytic lymphohistiocytosis

GATA2:

GATA binding protein 2

HLH:

Hemophagocytic lymphohistiocytosis

HPV:

Human papillomavirus

HSCT:

Hematopoietic stem cell transplantation

iNKT:

Invariant NKT

ITK:

IL-2-inducible T cell kinase

LRBA:

LPS-responsive beige-like anchor

MagT1:

Magnesium transporter 1

MCM4:

Minichromosome maintenance complex component 4

MST1:

Mammalian sterile 20-like protein

MTOR:

Mammalian target of rapamycin

NK:

Natural killer

PASLI:

P110δ-activating mutation causing senescent T cells, lymphadenopathy, and immune deficiency

PI3K:

Phosphatidylinositol-3-OH kinase

PIP2:

Phosphatidylinositol-(4,5)-biphosphate

PIP3:

Phosphatidylinositol-(3,4,5)-triphosphate

PKC:

Protein kinase C

PLC:

Phospholipase C

PML:

Progressive multifocal leukoencephalopathy

SAP:

SLAM-associated protein

SCID:

Severe combined immunodeficiency

SH2:

Src homology 2

SM:

Sec1/munc18

SNARE:

Soluble NSF attachment protein receptor

STK4:

Serine/threonine kinase 4

XIAP:

X-linked inhibitor of apoptosis

XLP:

X-linked lymphoproliferative disease

XMEN:

X-linked immunodeficiency with magnesium defect, EBV infection, and neoplasia

References

  • Abdollahpour H, Appaswamy G, Kotlarz D, Diestelhorst J, Beier R, Schäffer AA, Gertz EM, Schambach A, Kreipe HH, Pfeifer D, Engelhardt KR, Rezaei N, Grimbacher B, Lohrmann S, Sherkat R, Klein C (2012) The phenotype of human STK4 deficiency. Blood 119(15):3450–3457

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Alangari A, Alsultan A, Adly N, Massaad MJ, Kiani IS, Aljebreen A, Raddaoui E, Almomen AK, Al-Muhsen S, Geha RS, Alkuraya FS (2012) LPS-responsive beige-like anchor (LRBA) gene mutation in a family with inflammatory bowel disease and combined immunodeficiency. J Allergy Clin Immunol 130(2):481–488

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Angulo I, Vadas O, Garçon F, Banham-Hall E, Plagnol V, Leahy TR, Baxendale H, Coulter T, Curtis J, Wu C, Blake-Palmer K, Perisic O, Smyth D, Maes M, Fiddler C, Juss J, Cilliers D, Markelj G, Chandra A, Farmer G, Kielkowska A, Clark J, Kracker S, Debré M, Picard C, Pellier I, Jabado N, Morris JA, Barcenas-Morales G, Fischer A, Stephens L, Hawkins P, Barrett JC, Abinun M, Clatworthy M, Durandy A, Doffinger R, Chilvers ER, Cant AJ, Kumararatne D, Okkenhaug K, Williams RL, Condliffe A, Nejentsev S (2013) Phosphoinositide 3-kinase δ gene mutation predisposes to respiratory infection and airway damage. Science 342(6160):866–871

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Booth C, Gilmour KC, Veys P, Gennery AR, Slatter MA, Chapel H, Heath PT, Steward CG, Smith O, O’Meara A, Kerrigan H, Mahlaoui N, Cavazzana-Calvo M, Fischer A, Moshous D, Blanche S, Pachlopnik Schmid J, Latour S, de Saint-Basile G, Albert M, Notheis G, Rieber N, Strahm B, Ritterbusch H, Lankester A, Hartwig NG, Meyts I, Plebani A, Soresina A, Finocchi A, Pignata C, Cirillo E, Bonanomi S, Peters C, Kalwak K, Pasic S, Sedlacek P, Jazbec J, Kanegane H, Nichols KE, Hanson IC, Kapoor N, Haddad E, Cowan M, Choo S, Smart J, Arkwright PD, Gaspar HB (2011) X-linked lymphoproliferative disease due to SAP/SH2D1A deficiency: a multicenter study on the manifestations, management and outcome of the disease. Blood 117(1):53–62

    Google Scholar 

  • Bottino C, Falco M, Parolini S, Marcenaro E, Augugliaro R, Sivori S, Landi E, Biassoni R, Notarangelo LD, Moretta L, Moretta A (2001) NTB-A [correction of GNTB-A], a novel SH2D1A-associated surface molecule contributing to the inability of natural killer cells to kill Epstein-Barr virus-infected B cells in X-linked lymphoproliferative disease. J Exp Med 194(3):235–246

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cannons JL, Qi H, Lu KT, Dutta M, Gomez-Rodriguez J, Cheng J, Wakeland EK, Germain RN, Schwartzberg PL (2010) Optimal germinal center responses require a multistage T cell: B cell adhesion process involving integrins, SLAM-associated protein, and CD84. Immunity 32(2):253–265

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cannons JL, Tangye SG, Schwartzberg PL (2011) SLAM family receptors and SAP adaptors in immunity. Annu Rev Immunol 29:665–705

    Article  CAS  PubMed  Google Scholar 

  • Chaganti S, Ma CS, Bell AI, Croom-Carter D, Hislop AD, Tangye SG, Rickinson AB (2008) Epstein-Barr virus persistence in the absence of conventional memory B cells: IgM+ IgD+ CD27+ B cells harbor the virus in X-linked lymphoproliferative disease patients. Blood 112(3):672–679

    Article  CAS  PubMed  Google Scholar 

  • Chaigne-Delalande B, Li FY, O’Connor GM, Lukacs MJ, Jiang P, Zheng L, Shatzer A, Biancalana M, Pittaluga S, Matthews HF, Jancel TJ, Bleesing JJ, Marsh RA, Kuijpers TW, Nichols KE, Lucas CL, Nagpal S, Mehmet H, Su HC, Cohen JI, Uzel G, Lenardo MJ (2013) Mg2+ regulates cytotoxic functions of NK and CD8 T cells in chronic EBV infection through NKG2D. Science 341(6142):186–191

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chung BK, Tsai K, Allan LL, Zheng DJ, Nie JC, Biggs CM, Hasan MR, Kozak FK, van den Elzen P, Priatel JJ, Tan R (2013) Innate immune control of EBV-infected B cells by invariant natural killer T cells. Blood 122(15):2600–2608

    Article  CAS  PubMed  Google Scholar 

  • Coffey AJ, Brooksbank RA, Brandau O, Oohashi T, Howell GR, Bye JM, Cahn AP, Durham J, Heath P, Wray P, Pavitt R, Wilkinson J, Leversha M, Huckle E, Shaw-Smith CJ, Dunham A, Rhodes S, Schuster V, Porta G, Yin L, Serafini P, Sylla B, Zollo M, Franco B, Bolino A, Seri M, Lanyi A, Davis JR, Webster D, Harris A, Lenoir G, de St Basile G, Jones A, Behloradsky BH, Achatz H, Murken J, Fassler R, Sumegi J, Romeo G, Vaudin M, Ross MT, Meindl A, Bentley DR (1998) Host response to EBV infection in X-linked lymphoproliferative disease results from mutations in an SH2-domain encoding gene. Nat Genet 20(2):129–135

    Google Scholar 

  • Cohen JI, Jaffe ES, Dale JK, Pittaluga S, Heslop HE, Rooney CM, Gottschalk S, Bollard CM, Rao VK, Marques A, Burbelo PD, Turk SP, Fulton R, Wayne AS, Little RF, Cairo MS, El-Mallawany NK, Fowler D, Sportes C, Bishop MR, Wilson W, Straus SE (2011) Characterization and treatment of chronic active Epstein-Barr virus disease: a 28-year experience in the United States. Blood 117(22):5835–5849

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cohen JI, Niemela JE, Stoddard JL, Pittaluga S, Heslop H, Jaffe ES, Dowdell K (2015) Late-onset severe chronic active EBV in a patient for five years with mutations in STXBP2 (MUNC18-2) and PRF1 (Perforin 1). J Clin Immunol 35(5):445–448

    Google Scholar 

  • Côte M, Ménager MM, Burgess A, Mahlaoui N, Picard C, Schaffner C, Al-Manjomi F, Al-Harbi M, Alangari A, Le Deist F, Gennery AR, Prince N, Cariou A, Nitschke P, Blank U, El-Ghazali G, Ménasché G, Latour S, Fischer A, de Saint Basile G (2009) Munc18-2 deficiency causes familial hemophagocytic lymphohistiocytosis type 5 and impairs cytotoxic granule exocytosis in patient NK cells. J Clin Invest 119(12):3765–3773

    Google Scholar 

  • Crotty S, Kersh EN, Cannons J, Schwartzberg PL, Ahmed R (2003) SAP is required for generating long-term humoral immunity. Nature 421(6920):282–287

    Article  CAS  PubMed  Google Scholar 

  • Das R, Bassiri H, Guan P, Wiener S, Banerjee PP, Zhong MC, Veillette A, Orange JS, Nichols KE (2013) The adaptor molecule SAP plays essential roles during invariant NKT cell cytotoxicity and lytic synapse formation. Blood 121(17):3386–3395

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • de Vries E, Koene HR, Vossen JM, Gratama JW, von dem Borne AE, Waaijer JL, Haraldsson A, de Haas M, van Tol MJ (1996) Identification of an unusual Fc gamma receptor IIIa (CD16) on natural killer cells in a patient with recurrent infections. Blood 88(8):3022–3027

    PubMed  Google Scholar 

  • Deau MC, Heurtier L, Frange P, Suarez F, Bole-Feysot C, Nitschke P, Cavazzana M, Picard C, Durandy A, Fischer A, Kracker S (2014)  A human immunodeficiency caused by mutations in the PIK3R1 gene. J Clin Invest 124(9):3923–3928

    Google Scholar 

  • Dupré L, Andolfi G, Tangye SG, Clementi R, Locatelli F, Aricò M, Aiuti A, Roncarolo MG (2005) SAP controls the cytolytic activity of CD8+ T cells against EBV-infected cells. Blood 105(11):4383–4389

    Article  PubMed  Google Scholar 

  • Eidenschenk C, Dunne J, Jouanguy E, Fourlinnie C, Gineau L, Bacq D, McMahon C, Smith O, Casanova JL, Abel L, Feighery C (2006) A novel primary immunodeficiency with specific natural-killer cell deficiency maps to the centromeric region of chromosome 8. Am J Hum Genet 78(4):721–727

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Faulkner GC, Burrows SR, Khanna R, Moss DJ, Bird AG, Crawford DH (1999) X-Linked agammaglobulinemia patients are not infected with Epstein-Barr virus: implications for the biology of the virus. J Virol 73(2):1555–1564

    PubMed Central  CAS  PubMed  Google Scholar 

  • Filipovich AH, Zhang K, Snow AL, Marsh RA (2010) X-linked lymphoproliferative syndromes: brothers or distant cousins? Blood 116(18):3398–3408

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gineau L, Cognet C, Kara N, Lach FP, Dunne J, Veturi U, Picard C, Trouillet C, Eidenschenk C, Aoufouchi S, Alcaïs A, Smith O, Geissmann F, Feighery C, Abel L, Smogorzewska A, Stillman B, Vivier E, Casanova JL, Jouanguy E (2012) Partial MCM4 deficiency in patients with growth retardation, adrenal insufficiency, and natural killer cell deficiency. J Clin Invest 122(3):821–832

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Grier JT, Forbes LR, Monaco-Shawver L, Oshinsky J, Atkinson TP, Moody C, Pandey R, Campbell KS, Orange JS (2012) Human immunodeficiency-causing mutation defines CD16 in spontaneous NK cell cytotoxicity. J Clin Invest 122(10):3769–3780

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hackmann Y, Graham SC, Ehl S, Höning S, Lehmberg K, Aricò M, Owen DJ, Griffiths GM (2013) Syntaxin binding mechanism and disease-causing mutations in Munc18-2. Proc Natl Acad Sci USA 110(47):E4482–E4491

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hislop AD, Taylor GS, Sauce D, Rickinson AB (2007) Cellular responses to viral infection in humans: lessons from Epstein-Barr virus. Annu Rev Immunol 25:587–617

    Article  CAS  PubMed  Google Scholar 

  • Hislop AD, Palendira U, Leese AM, Arkwright PD, Rohrlich PS, Tangye SG, Gaspar HB, Lankester AC, Moretta A, Rickinson AB (2010) Impaired Epstein-Barr virus-specific CD8+ T-cell function in X-linked lymphoproliferative disease is restricted to SLAM family-positive B-cell targets. Blood 116(17):3249–3257

    Article  CAS  PubMed  Google Scholar 

  • Hsu AP, Sampaio EP, Khan J, Calvo KR, Lemieux JE, Patel SY, Frucht DM, Vinh DC, Auth RD, Freeman AF, Olivier KN, Uzel G, Zerbe CS, Spalding C, Pittaluga S, Raffeld M, Kuhns DB, Ding L, Paulson ML, Marciano BE, Gea-Banacloche JC, Orange JS, Cuellar-Rodriguez J, Hickstein DD, Holland SM (2011) Mutations in GATA2 are associated with the autosomal dominant and sporadic monocytopenia and mycobacterial infection (MonoMAC) syndrome. Blood 118(10):2653–2655

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Huck K, Feyen O, Niehues T, Rüschendorf F, Hübner N, Laws HJ, Telieps T, Knapp S, Wacker HH, Meindl A, Jumaa H, Borkhardt A (2009) Girls homozygous for an IL-2-inducible T cell kinase mutation that leads to protein deficiency develop fatal EBV-associated lymphoproliferation. J Clin Invest 119(5):1350–1358

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Imadome K, Shirakata M, Shimizu N, Nonoyama S, Yamanashi Y (2003) CD40 ligand is a critical effector of Epstein-Barr virus in host cell survival and transformation. Proc Natl Acad Sci USA 100(13):7836–7840

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Katano H, Ali MA, Patera AC, Catalfamo M, Jaffe ES, Kimura H, Dale JK, Straus SE, Cohen JI (2004) Chronic active Epstein-Barr virus infection associated with mutations in perforin that impair its maturation. Blood 103(4):1244–1252

    Article  CAS  PubMed  Google Scholar 

  • Koganti S, de la Paz A, Freeman AF, Bhaduri-McIntosh S (2014) B lymphocytes from patients with a hypomorphic mutation in STAT3 resist Epstein-Barr virus-driven cell proliferation. J Virol 88(1):516–524

    Article  PubMed Central  PubMed  Google Scholar 

  • Krieg A, Correa RG, Garrison JB, Le Negrate G, Welsh K, Huang Z, Knoefel WT, Reed JC (2009) XIAP mediates NOD signaling via interaction with RIP2. Proc Natl Acad Sci USA 106(34):14524–14529

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kuehn HS, Niemela JE, Rangel-Santos A, Zhang M, Pittaluga S, Stoddard JL, Hussey AA, Evbuomwan MO, Priel DA, Kuhns DB, Park CL, Fleisher TA, Uzel G, Oliveira JB (2013) Loss-of-function of the protein kinase C δ (PKCδ) causes a B-cell lymphoproliferative syndrome in humans. Blood 121(16):3117–3125  

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Latour S, Gish G, Helgason CD, Humphries RK, Pawson T, Veillette A (2001) Regulation of SLAM-mediated signal transduction by SAP, the X-linked lymphoproliferative gene product. Nat Immunol 2(8):681–690

    Google Scholar 

  • Li FY, Chaigne-Delalande B, Kanellopoulou C, Davis JC, Matthews HF, Douek DC, Cohen JI, Uzel G, Su HC, Lenardo MJ (2011) Second messenger role for Mg2+ revealed by human T-cell immunodeficiency. Nature 475(7357):471–476

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Li FY, Chaigne-Delalande B, Su H, Uzel G, Matthews H, Lenardo MJ (2014) XMEN disease: a new primary immunodeficiency affecting Mg2+ regulation of immunity against Epstein-Barr virus. Blood 123(14):2148–2152

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Linka RM, Risse SL, Bienemann K, Werner M, Linka Y, Krux F, Synaeve C, Deenen R, Ginzel S, Dvorsky R, Gombert M, Halenius A, Hartig R, Helminen M, Fischer A, Stepensky P, Vettenranta K, Köhrer K, Ahmadian MR, Laws HJ, Fleckenstein B, Jumaa H, Latour S, Schraven B, Borkhardt A (2012) Loss-of-function mutations within the IL-2 inducible kinase ITK in patients with EBV-associated lymphoproliferative diseases. Leukemia 26(5):963–971

    Article  CAS  PubMed  Google Scholar 

  • Lucas CL, Kuehn HS, Zhao F, Niemela JE, Deenick EK, Palendira U, Avery DT, Moens L, Cannons JL, Biancalana M, Stoddard J, Ouyang W, Frucht DM, Rao VK, Atkinson TP, Agharahimi A, Hussey AA, Folio LR, Olivier KN, Fleisher TA, Pittaluga S, Holland SM, Cohen JI, Oliveira JB, Tangye SG, Schwartzberg PL, Lenardo MJ, Uzel G (2014) Dominant-activating germline mutations in the gene encoding the PI(3)K catalytic subunit p110δ result in T cell senescence and human immunodeficiency. Nat Immunol 15(1):88–97

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ma CS, Hare NJ, Nichols KE, Dupré L, Andolfi G, Roncarolo MG, Adelstein S, Hodgkin PD, Tangye SG (2005) Impaired humoral immunity in X-linked lymphoproliferative disease is associated with defective IL-10 production by CD4+ T cells. J Clin Invest 115(4):1049–1059

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Marsh RA, Villanueva J, Kim MO, Zhang K, Marmer D, Risma KA, Jordan MB, Bleesing JJ, Filipovich AH (2009) Patients with X-linked lymphoproliferative disease due to BIRC4 mutation have normal invariant natural killer T-cell populations. Clin Immunol 132(1):116–123

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Marsh RA, Madden L, Kitchen BJ, Mody R, McClimon B, Jordan MB, Bleesing JJ, Zhang K, Filipovich AH (2010) XIAP deficiency: a unique primary immunodeficiency best classified as X-linked familial hemophagocytic lymphohistiocytosis and not as X-linked lymphoproliferative disease. Blood 116(7):1079–1082

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Marsh RA, Rao K, Satwani P, Lehmberg K, Müller I, Li D, Kim MO, Fischer A, Latour S, Sedlacek P, Barlogis V, Hamamoto K, Kanegane H, Milanovich S, Margolis DA, Dimmock D, Casper J, Douglas DN, Amrolia PJ, Veys P, Kumar AR, Jordan MB, Bleesing JJ, Filipovich AH (2013) Allogeneic hematopoietic cell transplantation for XIAP deficiency: an international survey reveals poor outcomes. Blood 121(6):877–883

    Article  CAS  PubMed  Google Scholar 

  • Marsh RA, Bleesing JJ, Chandrakasan S, Jordan MB, Davies SM, Filipovich AH (2014) Reduced-intensity conditioning hematopoietic cell transplantation is an effective treatment for patients with SLAM-associated protein deficiency/X-linked lymphoproliferative disease type 1. Biol Blood Marrow Transplant. pii:S1083-8791(14)00350-4

    Google Scholar 

  • Martin E, Palmic N, Sanquer S, Lenoir C, Hauck F, Mongellaz C, Fabrega S, Nitschké P, Esposti MD, Schwartzentruber J, Taylor N, Majewski J, Jabado N, Wynn RF, Picard C, Fischer A, Arkwright PD, Latour S (2014) CTP synthase 1 deficiency in humans reveals its central role in lymphocyte proliferation. Nature 510(7504):288–292

    Article  CAS  PubMed  Google Scholar 

  • Milone MC, Tsai DE, Hodinka RL, Silverman LB, Malbran A, Wasik MA, Nichols KE (2005) Treatment of primary Epstein-Barr virus infection in patients with X-linked lymphoproliferative disease using B-cell-directed therapy. Blood 105(3):994–996

    Article  CAS  PubMed  Google Scholar 

  • Moshous D, Martin E, Carpentier W, Lim A, Callebaut I, Canioni D, Hauck F, Majewski J, Schwartzentruber J, Nitschke P, Sirvent N, Frange P, Picard C, Blanche S, Revy P, Fischer A, Latour S, Jabado N, de Villartay JP (2013) Whole-exome sequencing identifies Coronin-1A deficiency in 3 siblings with immunodeficiency and EBV-associated B-cell lymphoproliferation. J Allergy Clin Immunol 131(6):1594–1603

    Article  CAS  PubMed  Google Scholar 

  • Nehme NT, Pachlopnik Schmid J, Debeurme F, André-Schmutz I, Lim A, Nitschke P, Rieux-Laucat F, Lutz P, Picard C, Mahlaoui N, Fischer A, de Saint Basile G (2012) MST1 mutations in autosomal recessive primary immunodeficiency characterized by defective naive T-cell survival. Blood 119(15):3458–3468

    Google Scholar 

  • Nichols KE, Harkin DP, Levitz S, Krainer M, Kolquist KA, Genovese C, Bernard A, Ferguson M, Zuo L, Snyder E, Buckler AJ, Wise C, Ashley J, Lovett M, Valentine MB, Look AT, Gerald W, Housman DE, Haber DA (1998) Inactivating mutations in an SH2 domain-encoding gene in X-linked lymphoproliferative syndrome. Proc Natl Acad Sci USA 95(23):13765–13770

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nichols KE, Hom J, Gong SY, Ganguly A, Ma CS, Cannons JL, Tangye SG, Schwartzberg PL, Koretzky GA, Stein PL (2005) Regulation of NKT cell development by SAP, the protein defective in XLP. Nat Med 11(3):340–345

    Article  CAS  PubMed  Google Scholar 

  • Okkenhaug K, Vanhaesebroeck B (2003) PI3K in lymphocyte development, differentiation and activation. Nat Rev Immunol 3(4):317–330

    Article  CAS  PubMed  Google Scholar 

  • Pachlopnik Schmid J, Canioni D, Moshous D, Touzot F, Mahlaoui N, Hauck F, Kanegane H, Lopez-Granados E, Mejstrikova E, Pellier I, Galicier L, Galambrun C, Barlogis V, Bordigoni P, Fourmaintraux A, Hamidou M, Dabadie A, Le Deist F, Haerynck F, Ouachée-Chardin M, Rohrlich P, Stephan JL, Lenoir C, Rigaud S, Lambert N, Milili M, Schiff C, Chapel H, Picard C, de Saint Basile G, Blanche S, Fischer A, Latour S (2011) Clinical similarities and differences of patients with X-linked lymphoproliferative syndrome type 1 (XLP-1/SAP deficiency) versus type 2 (XLP-2/XIAP deficiency). Blood 117(5):1522–1529

    Google Scholar 

  • Palendira U, Low C, Chan A, Hislop AD, Ho E, Phan TG, Deenick E, Cook MC, Riminton DS, Choo S, Loh R, Alvaro F, Booth C, Gaspar HB, Moretta A, Khanna R, Rickinson AB, Tangye SG (2011) Molecular pathogenesis of EBV susceptibility in XLP as revealed by analysis of female carriers with heterozygous expression of SAP. PLoS Biol 9(11):e1001187

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Palendira U, Low C, Bell AI, Ma CS, Abbott RJ, Phan TG, Riminton DS, Choo S, Smart JM, Lougaris V, Giliani S, Buckley RH, Grimbacher B, Alvaro F, Klion AD, Nichols KE, Adelstein S, Rickinson AB, Tangye SG (2012) Expansion of somatically reverted memory CD8+ T cells in patients with X-linked lymphoproliferative disease caused by selective pressure from Epstein-Barr virus. J Exp Med 209(5):913–924

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Parolini S, Bottino C, Falco M, Augugliaro R, Giliani S, Franceschini R, Ochs HD, Wolf H, Bonnefoy JY, Biassoni R, Moretta L, Notarangelo LD, Moretta A (2000) X-linked lymphoproliferative disease. 2B4 molecules displaying inhibitory rather than activating function are responsible for the inability of natural killer cells to kill Epstein-Barr virus-infected cells. J Exp Med 192(3):337–346

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Purtilo DT (1976) Pathogenesis and phenotypes of an X-linked recessive lymphoproliferative syndrome. Lancet 2(7991):882–885

    Article  CAS  PubMed  Google Scholar 

  • Purtilo DT, Cassel CK, Yang JP, Harper R (1975) X-linked recessive progressive combined variable immunodeficiency (Duncan’s disease). Lancet 1(7913):935–940

    Article  CAS  PubMed  Google Scholar 

  • Purtilo DT, DeFlorio D Jr, Hutt LM, Bhawan J, Yang JP, Otto R, Edwards W (1977) Variable phenotypic expression of an X-linked recessive lymphoproliferative syndrome. N Engl J Med 297(20):1077–1080

    Article  CAS  PubMed  Google Scholar 

  • Qi H, Cannons JL, Klauschen F, Schwartzberg PL, Germain RN (2008) SAP-controlled T-B cell interactions underlie germinal centre formation. Nature 455(7214):764–769

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rigaud S, Fondanèche MC, Lambert N, Pasquier B, Mateo V, Soulas P, Galicier L, Le Deist F, Rieux-Laucat F, Revy P, Fischer A, de Saint Basile G, Latour S (2006) XIAP deficiency in humans causes an X-linked lymphoproliferative syndrome. Nature 444(7115):110–114

    Google Scholar 

  • Rivat C, Booth C, Alonso-Ferrero M, Blundell M, Sebire NJ, Thrasher AJ, Gaspar HB (2013) SAP gene transfer restores cellular and humoral immune function in a murine model of X-linked lymphoproliferative disease. Blood 121(7):1073–1076

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rohr J, Beutel K, Maul-Pavicic A, Vraetz T, Thiel J, Warnatz K, Bondzio I, Gross-Wieltsch U, Schündeln M, Schütz B, Woessmann W, Groll AH, Strahm B, Pagel J, Speckmann C, Janka G, Griffiths G, Schwarz K, zur Stadt U, Ehl S (2010) Atypical familial hemophagocytic lymphohistiocytosis due to mutations in UNC13D and STXBP2 overlaps with primary immunodeficiency diseases. Haematologica 95(12):2080–2087

    Google Scholar 

  • Salzer E, Daschkey S, Choo S, Gombert M, Santos-Valente E, Ginzel S, Schwendinger M, Haas OA, Fritsch G, Pickl WF, Förster-Waldl E, Borkhardt A, Boztug K, Bienemann K, Seidel MG (2013) Combined immunodeficiency with life-threatening EBV-associated lymphoproliferative disorder in patients lacking functional CD27. Haematologica 98(3):473–478

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sayos J, Wu C, Morra M, Wang N, Zhang X, Allen D, van Schaik S, Notarangelo L, Geha R, Roncarolo MG, Oettgen H, De Vries JE, Aversa G, Terhorst C (1998) The X-linked lymphoproliferative-disease gene product SAP regulates signals induced through the co-receptor SLAM. Nature 395(6701):462–469

    Article  CAS  PubMed  Google Scholar 

  • Snow AL, Marsh RA, Krummey SM, Roehrs P, Young LR, Zhang K, van Hoff J, Dhar D, Nichols KE, Filipovich AH, Su HC, Bleesing JJ, Lenardo MJ (2009) Restimulation-induced apoptosis of T cells is impaired in patients with X-linked lymphoproliferative disease caused by SAP deficiency. J Clin Invest 119(10):2976–2989

    PubMed Central  CAS  PubMed  Google Scholar 

  • Snow AL, Xiao W, Stinson JR, Lu W, Chaigne-Delalande B, Zheng L, Pittaluga S, Matthews HF, Schmitz R, Jhavar S, Kuchen S, Kardava L, Wang W, Lamborn IT, Jing H, Raffeld M, Moir S, Fleisher TA, Staudt LM, Su HC, Lenardo MJ (2012) Congenital B cell lymphocytosis explained by novel germline CARD11 mutations. J Exp Med 209(12):2247–2261

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Speckmann C, Lehmberg K, Albert MH, Damgaard RB, Fritsch M, Gyrd-Hansen M, Rensing-Ehl A, Vraetz T, Grimbacher B, Salzer U, Fuchs I, Ufheil H, Belohradsky BH, Hassan A, Cale CM, Elawad M, Strahm B, Schibli S, Lauten M, Kohl M, Meerpohl JJ, Rodeck B, Kolb R, Eberl W, Soerensen J, von Bernuth H, Lorenz M, Schwarz K, Zur Stadt U, Ehl S (2013) X-linked inhibitor of apoptosis (XIAP) deficiency: the spectrum of presenting manifestations beyond hemophagocytic lymphohistiocytosis. Clin Immunol 149(1):133–141

    Google Scholar 

  • Spinner MA, Sanchez LA, Hsu AP, Shaw PA, Zerbe CS, Calvo KR, Arthur DC, Gu W, Gould CM, Brewer CC, Cowen EW, Freeman AF, Olivier KN, Uzel G, Zelazny AM, Daub JR, Spalding CD, Claypool RJ, Giri NK, Alter BP, Mace EM, Orange JS, Cuellar-Rodriguez J, Hickstein DD, Holland SM (2014) GATA2 deficiency: a protean disorder of hematopoiesis, lymphatics, and immunity. Blood 123(6):809–821

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • van Montfrans JM, Hoepelman AI, Otto S, van Gijn M, van de Corput L, de Weger RA, Monaco-Shawver L, Banerjee PP, Sanders EA, Jol-van der Zijde CM, Betts MR, Orange JS, Bloem AC, Tesselaar K (2012) CD27 deficiency is associated with combined immunodeficiency and persistent symptomatic EBV viremia. J Allergy Clin Immunol 129(3):787–793

    Google Scholar 

  • Zhao F, Cannons JL, Dutta M, Griffiths GM, Schwartzberg PL (2012) Positive and negative signaling through SLAM receptors regulate synapse organization and thresholds of cytolysis. Immunity 36(6):1003–1016

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • zur Stadt U, Rohr J, Seifert W, Koch F, Grieve S, Pagel J, Strauss J, Kasper B, Nürnberg G, Becker C, Maul-Pavicic A, Beutel K, Janka G, Griffiths G, Ehl S, Hennies HC (2009) Familial hemophagocytic lymphohistiocytosis type 5 (FHL-5) is caused by mutations in Munc18-2 and impaired binding to syntaxin 11. Am J Hum Genet 85(4):482–492

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey I. Cohen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Cohen, J.I. (2015). Primary Immunodeficiencies Associated with EBV Disease. In: Münz, C. (eds) Epstein Barr Virus Volume 1. Current Topics in Microbiology and Immunology, vol 390. Springer, Cham. https://doi.org/10.1007/978-3-319-22822-8_10

Download citation

Publish with us

Policies and ethics