Skip to main content

Circadian Rhythms and Cellular Networks: A Systems Biology Perspective

  • Chapter
Cellular Rhythms and Networks

Part of the book series: SpringerBriefs in Cell Biology ((SBCB))

  • 492 Accesses

Abstract

The multi-scale view of circadian rhythms on the basis of systems biology would empower the discovery of novel therapeutic strategies such as chronotherapy. Depending on the feedback loops with multiple pathways and complex protein–protein interactions involved, the circadian clocks form the basic cellular timing mechanisms that synchronize vital physiological processes. The two essential cellular rhythms, the cell division cycle and the circadian pattern are coupled oscillators with intertwined bidirectional circuits. The circadian regulation of cell cycle may provide the molecular and cellular linkages among aging, cancer, and chronotherapy with implications for better drug efficacy and tolerance. Approaches including gene expression profiling and proteomic analyses are re-shaping our understanding of the circadian systems. Systems biology methods such as genetic perturbations and computational modeling within each scale may contribute to the advancement of systems and dynamical medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Baggs JE, Hogenesch JB (2010) Genomics and systems approaches in the mammalian circadian clock. Curr Opin Genet Dev 20:581–587

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bieler J, Cannavo R, Gustafson K, Gobet C, Gatfield D, Naef F (2014) Robust synchronization of coupled circadian and cell cycle oscillators in single mammalian cells. Mol Syst Biol 10:739

    Article  PubMed Central  PubMed  Google Scholar 

  • Bussi IL, Levín G, Golombek DA, Agostino PV (2014) Involvement of dopamine signaling in the circadian modulation of interval timing. Eur J Neurosci 40:2299–2310

    Article  PubMed  Google Scholar 

  • Cao Q, Gery S, Dashti A, Yin D, Zhou Y, Gu J, Koeffler HP (2009) A role for the clock gene per1 in prostate cancer. Cancer Res 69:7619–7625

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cao R, Robinson B, Xu H, Gkogkas C, Khoutorsky A, Alain T, Yanagiya A, Nevarko T, Liu AC, Amir S et al (2013) Translational control of entrainment and synchrony of the suprachiasmatic circadian clock by mTOR/4E-BP1 signaling. Neuron 79:712–724

    Article  CAS  PubMed  Google Scholar 

  • Chandra V, Mahajan S, Saini A, Dkhar HK, Nanduri R, Raj EB, Kumar A, Gupta P (2013) Human IL10 gene repression by Rev-erbα ameliorates Mycobacterium tuberculosis clearance. J Biol Chem 288:10692–10702

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chong SYC, Ptáček LJ, Fu Y-H (2012) Genetic insights on sleep schedules: this time, it’s PERsonal. Trends Genet 28:598–605

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Couto P, Miranda D, Vieira R, Vilhena A, De Marco L, Bastos-Rodrigues L (2014) Association between CLOCK, PER3 and CCRN4L with non-small cell lung cancer in Brazilian patients. Mol Med Rep 10:435–440

    CAS  PubMed  Google Scholar 

  • Dashti HS, Follis JL, Smith CE, Tanaka T, Cade BE, Gottlieb DJ, Hruby A, Jacques PF, Lamon-Fava S, Richardson K et al (2015) Habitual sleep duration is associated with BMI and macronutrient intake and may be modified by CLOCK genetic variants. Am J Clin Nutr 101:135–143

    Article  CAS  PubMed  Google Scholar 

  • DBBR (2015) The database of biological rhythms. http://pharmtao.com/health/biological-rhythms-database/. Accessed 1 June 2015

  • De Haro L, Panda S (2006) Systems biology of circadian rhythms: an outlook. J Biol Rhythms 21:507–518

    Article  PubMed  Google Scholar 

  • El Cheikh R, Bernard S, El Khatib N (2014) Modeling circadian clock–cell cycle interaction effects on cell population growth rates. J Theor Biol 363:318–331

    Article  PubMed  Google Scholar 

  • Fernandes PACM, Cecon E, Markus RP, Ferreira ZS (2006) Effect of TNF-alpha on the melatonin synthetic pathway in the rat pineal gland: basis for a “feedback” of the immune response on circadian timing. J Pineal Res 41:344–350

    Article  CAS  PubMed  Google Scholar 

  • Fu A, Leaderer D, Zheng T, Hoffman AE, Stevens RG, Zhu Y (2012) Genetic and epigenetic associations of circadian gene TIMELESS and breast cancer risk. Mol Carcinog 51:923–929

    Article  CAS  PubMed  Google Scholar 

  • Gérard C, Goldbeter A (2012) Entrainment of the mammalian cell cycle by the circadian clock: modeling two coupled cellular rhythms. PLoS Comput Biol 8:e1002516

    Article  PubMed Central  PubMed  Google Scholar 

  • Goldbeter A, Gérard C, Gonze D, Leloup J-C, Dupont G (2012) Systems biology of cellular rhythms. FEBS Lett 586:2955–2965

    Article  CAS  PubMed  Google Scholar 

  • Goldsmith CS, Bell-Pedersen D (2013) Diverse roles for MAPK signaling in circadian clocks. Adv Genet 84:1–39

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gotoh T, Vila-Caballer M, Liu J, Schiffhauer S, Finkielstein CV (2015) Association of the circadian factor Period 2 to p53 influences p53’s function in DNA-damage signaling. Mol Biol Cell 26:359–372

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hayes KR, Baggs JE, Hogenesch JB (2005) Circadian clocks are seeing the systems biology light. Genome Biol 6:219

    Article  PubMed Central  PubMed  Google Scholar 

  • Hoffman AE, Zheng T, Ba Y, Stevens RG, Yi C-H, Leaderer D, Zhu Y (2010) Phenotypic effects of the circadian gene Cryptochrome 2 on cancer-related pathways. BMC Cancer 10:110

    Article  PubMed Central  PubMed  Google Scholar 

  • Hogenesch JB, Ueda HR (2011) Understanding systems-level properties: timely stories from the study of clocks. Nat Rev Genet 12:407–416

    Article  CAS  PubMed  Google Scholar 

  • Hsuchou H, Wang Y, Cornelissen-Guillaume GG, Kastin AJ, Jang E, Halberg F, Pan W (2013) Diminished leptin signaling can alter circadian rhythm of metabolic activity and feeding. J Appl Physiol 115:995–1003

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hua P, Liu W, Chen D, Zhao Y, Chen L, Zhang N, Wang C, Guo S, Wang L, Xiao H et al (2014) Cry1 and Tef gene polymorphisms are associated with major depressive disorder in the Chinese population. J Affect Disord 157:100–103

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hwang J-W, Sundar IK, Yao H, Sellix MT, Rahman I (2014) Circadian clock function is disrupted by environmental tobacco/cigarette smoke, leading to lung inflammation and injury via a SIRT1-BMAL1 pathway. FASEB J 28:176–194

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Khapre RV, Samsa WE, Kondratov RV (2010) Circadian regulation of cell cycle: molecular connections between aging and the circadian clock. Ann Med 42:404–415

    Article  CAS  PubMed  Google Scholar 

  • Kishi T, Kitajima T, Ikeda M, Yamanouchi Y, Kinoshita Y, Kawashima K, Okochi T, Ozaki N, Iwata N (2008) Association analysis of nuclear receptor Rev-erb alpha gene (NR1D1) with mood disorders in the Japanese population. Neurosci Res 62:211–215

    Article  CAS  PubMed  Google Scholar 

  • Ko CH, Takahashi JS (2006) Molecular components of the mammalian circadian clock. Hum Mol Genet 15(Spec No 2):R271–R277

    Google Scholar 

  • Kondratov RV, Antoch MP (2007) Circadian proteins in the regulation of cell cycle and genotoxic stress responses. Trends Cell Biol 17:311–317

    Article  CAS  PubMed  Google Scholar 

  • Kovanen L, Kaunisto M, Donner K, Saarikoski ST, Partonen T (2013) CRY2 genetic variants associate with dysthymia. PLoS One 8:e71450

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kowalska E, Ripperger JA, Hoegger DC, Bruegger P, Buch T, Birchler T, Mueller A, Albrecht U, Contaldo C, Brown SA (2013) NONO couples the circadian clock to the cell cycle. Proc Natl Acad Sci U S A 110:1592–1599

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lecarpentier Y, Claes V, Duthoit G, Hébert J-L (2014) Circadian rhythms, Wnt/beta-catenin pathway and PPAR alpha/gamma profiles in diseases with primary or secondary cardiac dysfunction. Front Physiol 5:429

    Article  PubMed Central  PubMed  Google Scholar 

  • Lee JH, Sancar A (2011) Regulation of apoptosis by the circadian clock through NF-kappaB signaling. Proc Natl Acad Sci U S A 108:12036–12041

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lengyel Z, Lovig C, Kommedal S, Keszthelyi R, Szekeres G, Battyáni Z, Csernus V, Nagy AD (2013) Altered expression patterns of clock gene mRNAs and clock proteins in human skin tumors. Tumour Biol 34:811–819

    Article  CAS  PubMed  Google Scholar 

  • Lewintre EJ, Martín CR, Ballesteros CG, Montaner D, Rivera RF, Mayans JR, García-Conde J (2009) Cryptochrome-1 expression: a new prognostic marker in B-cell chronic lymphocytic leukemia. Haematologica 94:280–284

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lin F, Chen Y, Li X, Zhao Q, Tan Z (2013) Over-expression of circadian clock gene Bmal1 affects proliferation and the canonical Wnt pathway in NIH-3T3 cells. Cell Biochem Funct 31:166–172

    Article  CAS  PubMed  Google Scholar 

  • Lin C, Tang X, Zhu Z, Liao X, Zhao R, Fu W, Chen B, Jiang J, Qian R, Guo D (2014) The rhythmic expression of clock genes attenuated in human plaque-derived vascular smooth muscle cells. Lipids Health Dis 13:14

    Article  PubMed Central  PubMed  Google Scholar 

  • Liu C, Li H, Qi L, Loos RJF, Qi Q, Lu L, Gan W, Lin X (2011) Variants in GLIS3 and CRY2 are associated with type 2 diabetes and impaired fasting glucose in Chinese Hans. PLoS One 6:e21464

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Luo Y, Wang F, Chen L-A, Chen X-W, Chen Z-J, Liu P-F, Li F-F, Li C-Y, Liang W (2012) Deregulated expression of cry1 and cry2 in human gliomas. Asian Pac J Cancer Prev 13:5725–5728

    Article  PubMed  Google Scholar 

  • Maire M, Reichert CF, Gabel V, Viola AU, Strobel W, Krebs J, Landolt HP, Bachmann V, Cajochen C, Schmidt C (2014) Sleep ability mediates individual differences in the vulnerability to sleep loss: evidence from a PER3 polymorphism. Cortex 52:47–59

    Article  CAS  PubMed  Google Scholar 

  • Masri S, Cervantes M, Sassone-Corsi P (2013) The circadian clock and cell cycle: interconnected biological circuits. Curr Opin Cell Biol 25:730–734

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Merino B, Somoza B, Ruiz-Gayo M, Cano V (2008) Circadian rhythm drives the responsiveness of leptin-mediated hypothalamic pathway of cholecystokinin-8. Neurosci Lett 442:165–168

    Article  CAS  PubMed  Google Scholar 

  • Mullenders J, Fabius AWM, Madiredjo M, Bernards R, Beijersbergen RL (2009) A large scale shRNA barcode screen identifies the circadian clock component ARNTL as putative regulator of the p53 tumor suppressor pathway. PLoS One 4:e4798

    Article  PubMed Central  PubMed  Google Scholar 

  • Okazaki H, Matsunaga N, Fujioka T, Okazaki F, Akagawa Y, Tsurudome Y, Ono M, Kuwano M, Koyanagi S, Ohdo S (2014) Circadian regulation of mTOR by the ubiquitin pathway in renal cell carcinoma. Cancer Res 74:543–551

    Article  CAS  PubMed  Google Scholar 

  • Pappa KI, Gazouli M, Anastasiou E, Iliodromiti Z, Antsaklis A, Anagnou NP (2013) The major circadian pacemaker ARNT-like protein-1 (BMAL1) is associated with susceptibility to gestational diabetes mellitus. Diabetes Res Clin Pract 99:151–157

    Article  CAS  PubMed  Google Scholar 

  • Partonen T (2012) Clock gene variants in mood and anxiety disorders. J Neural Transm 119:1133–1145

    Article  CAS  PubMed  Google Scholar 

  • Ptitsyn AA, Gimble JM (2007) Analysis of circadian pattern reveals tissue-specific alternative transcription in leptin signaling pathway. BMC Bioinf 8(Suppl 7):S15

    Article  Google Scholar 

  • Rybakowski JK, Dmitrzak-Weglar M, Kliwicki S, Hauser J (2014) Polymorphism of circadian clock genes and prophylactic lithium response. Bipolar Disord 16:151–158

    Article  CAS  PubMed  Google Scholar 

  • Sato F, Nagata C, Liu Y, Suzuki T, Kondo J, Morohashi S, Imaizumi T, Kato Y, Kijima H (2009) PERIOD1 is an anti-apoptotic factor in human pancreatic and hepatic cancer cells. J Biochem 146:833–838

    Article  CAS  PubMed  Google Scholar 

  • Schöning JC, Staiger D (2005) At the pulse of time: protein interactions determine the pace of circadian clocks. FEBS Lett 579:3246–3252

    Article  PubMed  Google Scholar 

  • Shimba S, Watabe Y (2009) Crosstalk between the AHR signaling pathway and circadian rhythm. Biochem Pharmacol 77:560–565

    Article  CAS  PubMed  Google Scholar 

  • Sjöholm LK, Backlund L, Cheteh EH, Ek IR, Frisén L, Schalling M, Osby U, Lavebratt C, Nikamo P (2010) CRY2 is associated with rapid cycling in bipolar disorder patients. PLoS One 5:e12632

    Article  PubMed Central  PubMed  Google Scholar 

  • Štorcelová M, Vicián M, Reis R, Zeman M, Herichová I (2013) Expression of cell cycle regulatory factors hus1, gadd45a, rb1, cdkn2a and mre11a correlates with expression of clock gene per2 in human colorectal carcinoma tissue. Mol Biol Rep 40:6351–6361

    Article  PubMed  Google Scholar 

  • Truong T, Liquet B, Menegaux F, Plancoulaine S, Laurent-Puig P, Mulot C, Cordina-Duverger E, Sanchez M, Arveux P, Kerbrat P et al (2014) Breast cancer risk, nightwork, and circadian clock gene polymorphisms. Endocr Relat Cancer 21:629–638

    Article  CAS  PubMed  Google Scholar 

  • Ueda HR (2007) Systems biology of mammalian circadian clocks. Cold Spring Harb Symp Quant Biol 72:365–380

    Article  CAS  PubMed  Google Scholar 

  • Ukai H, Ueda HR (2010) Systems biology of mammalian circadian clocks. Annu Rev Physiol 72:579–603

    Article  CAS  PubMed  Google Scholar 

  • Vanderlind WM, Beevers CG, Sherman SM, Trujillo LT, McGeary JE, Matthews MD, Maddox WT, Schnyer DM (2014) Sleep and sadness: exploring the relation among sleep, cognitive control, and depressive symptoms in young adults. Sleep Med 15:144–149

    Article  PubMed Central  PubMed  Google Scholar 

  • Wallach T, Schellenberg K, Maier B, Kalathur RKR, Porras P, Wanker EE, Futschik ME, Kramer A (2013) Dynamic circadian protein–protein interaction networks predict temporal organization of cellular functions. PLoS Genet 9:e1003398

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wang X, Yu W, Zheng L (2015) The dynamics of NF-κB pathway regulated by circadian clock. Math Biosci 260:47–53

    Article  PubMed  Google Scholar 

  • Weigl Y, Ashkenazi IE, Peleg L (2013) Rhythmic profiles of cell cycle and circadian clock gene transcripts in mice: a possible association between two periodic systems. J Exp Biol 216:2276–2282

    Article  PubMed  Google Scholar 

  • Yamada Y, Forger D (2010) Multiscale complexity in the mammalian circadian clock. Curr Opin Genet Dev 20:626–633

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yang G, Wright CJ, Hinson MD, Fernando AP, Sengupta S, Biswas C, La P, Dennery PA (2014) Oxidative stress and inflammation modulate Rev-erbα signaling in the neonatal lung and affect circadian rhythmicity. Antioxid Redox Signal 21:17–32

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yasuniwa Y, Izumi H, Wang K-Y, Shimajiri S, Sasaguri Y, Kawai K, Kasai H, Shimada T, Miyake K, Kashiwagi E et al (2010) Circadian disruption accelerates tumor growth and angio/stromagenesis through a Wnt signaling pathway. PLoS One 5:e15330

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yoshida K, Sato M, Hase T, Elshazley M, Yamashita R, Usami N, Taniguchi T, Yokoi K, Nakamura S, Kondo M et al (2013) TIMELESS is overexpressed in lung cancer and its expression correlates with poor patient survival. Cancer Sci 104:171–177

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yu H, Meng X, Wu J, Pan C, Ying X, Zhou Y, Liu R, Huang W (2013) Cryptochrome 1 overexpression correlates with tumor progression and poor prognosis in patients with colorectal cancer. PLoS One 8:e61679

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zeng Z, Luo H, Yang J, Wu W, Chen D, Huang P, Xu R (2014) Overexpression of the circadian clock gene Bmal1 increases sensitivity to oxaliplatin in colorectal cancer. Clin Cancer Res 20:1042–1052

    Article  CAS  PubMed  Google Scholar 

  • Zhang EE, Kay SA (2010) Clocks not winding down: unravelling circadian networks. Nat Rev Mol Cell Biol 11:764–776

    Article  CAS  PubMed  Google Scholar 

  • Zhang EE, Liu Y, Dentin R, Pongsawakul PY, Liu AC, Hirota T, Nusinow DA, Sun X, Landais S, Kodama Y et al (2010a) Cryptochrome mediates circadian regulation of cAMP signaling and hepatic gluconeogenesis. Nat Med 16:1152–1156

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang Q, Bhattacharya S, Andersen ME, Conolly RB (2010b) Computational systems biology and dose–response modeling in relation to new directions in toxicity testing. J Toxicol Environ Health B Crit Rev 13:253–276

    Article  CAS  PubMed  Google Scholar 

  • Zhao N, Yang K, Yang G, Chen D, Tang H, Zhao D, Zhao C (2013) Aberrant expression of clock gene period1 and its correlations with the growth, proliferation and metastasis of buccal squamous cell carcinoma. PLoS One 8:e55894

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Yan, Q. (2015). Circadian Rhythms and Cellular Networks: A Systems Biology Perspective. In: Cellular Rhythms and Networks. SpringerBriefs in Cell Biology. Springer, Cham. https://doi.org/10.1007/978-3-319-22819-8_2

Download citation

Publish with us

Policies and ethics