Skip to main content

Introduction: Cellular Rhythms and Networks in Systems and Dynamical Medicine

  • Chapter
Cellular Rhythms and Networks

Part of the book series: SpringerBriefs in Cell Biology ((SBCB))

  • 465 Accesses

Abstract

Temporal elements such as rhythms are essential properties of biological organisms. Rhythmic physiological and psychological activities are maintained on the basis of complex interactions among components at various spatiotemporal levels from molecules to cells and organisms, from seconds to days and years. A systems biology perspective is necessary to understand the dynamical patterns and to characterize their functions, targets, and interactions. Studies of the biological rhythms at different levels such as the cellular level may have profound implications for health care. The development of systems and dynamical medicine would address the timely changes in the whole system. Such approaches would enable the establishment of systemic models for psychophysiological and pathological oscillations and feedback loops. The identification of the clusters of robust biomarkers such as cellular rhythmic networks may help improve the accuracy in the risk identification and prediction of disease progression. The development in systems biology based on both experimental and computational technologies would allow for the translation of the spatiotemporal models into the clinical practice of personalized and preventive medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abu-Asab MS, Chaouchi M, Alesci S, Galli S, Laassri M, Cheema AK, Atouf F, VanMeter J, Amri H (2011) Biomarkers in the age of omics: time for a systems biology approach. OMICS 15:105–112

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • An der Heiden U (2006) Schizophrenia as a dynamical disease. Pharmacopsychiatry 39(Suppl 1):S36–S42

    Article  PubMed  Google Scholar 

  • Baggs JE, Hogenesch JB (2010) Genomics and systems approaches in the mammalian circadian clock. Curr Opin Genet Dev 20:581–587

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Batista RTB, Ramirez DB, Santos RD, del Rosario MCI, Mendoza ER (2007) EUCLIS—an information system for circadian systems biology. IET Syst Biol 1:266–273

    Article  CAS  PubMed  Google Scholar 

  • Chen L, Liu R, Liu Z-P, Li M, Aihara K (2012) Detecting early-warning signals for sudden deterioration of complex diseases by dynamical network biomarkers. Sci Rep 2:342

    PubMed Central  PubMed  Google Scholar 

  • da Silva Lopes R, Resende NM, Honorio-França AC, França EL (2013) Application of bioinformatics in chronobiology research. Sci World J 2013:153839

    Google Scholar 

  • Damle RN, Calissano C, Chiorazzi N (2010) Chronic lymphocytic leukaemia: a disease of activated monoclonal B cells. Best Pract Res Clin Haematol 23:33–45

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • DBBR (2015) The database of biological rhythms. http://pharmtao.com/health/biological-rhythms-database/. Accessed 1 June 2015

  • De Haro L, Panda S (2006) Systems biology of circadian rhythms: an outlook. J Biol Rhythms 21:507–518

    Article  PubMed  Google Scholar 

  • Diez-Roux G, Banfi S, Sultan M, Geffers L, Anand S, Rozado D, Magen A, Canidio E, Pagani M, Peluso I et al (2011) A high-resolution anatomical atlas of the transcriptome in the mouse embryo. PLoS Biol 9:e1000582

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dunn DA, Apanovitch D, Follettie M, He T, Ryan T (2010) Taking a systems approach to the identification of novel therapeutic targets and biomarkers. Curr Pharm Biotechnol 11:721–734

    Article  CAS  PubMed  Google Scholar 

  • Filiou MD, Turck CW (2011) General overview: biomarkers in neuroscience research. Int Rev Neurobiol 101:1–17

    Article  CAS  PubMed  Google Scholar 

  • Frenkel-Morgenstern M, Cohen AA, Geva-Zatorsky N, Eden E, Prilusky J, Issaeva I, Sigal A, Cohen-Saidon C, Liron Y, Cohen L et al (2010) Dynamic proteomics: a database for dynamics and localizations of endogenous fluorescently-tagged proteins in living human cells. Nucleic Acids Res 38:D508–D512

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Frey U, Maksym G, Suki B (2011) Temporal complexity in clinical manifestations of lung disease. J Appl Physiol 110:1723–1731

    Article  PubMed  Google Scholar 

  • Gebicke-Haerter PJ, Pildaín LV, Matthäus F, Schmitt A, Falkai P (2013) Circadian rhythms investigated on the cellular and molecular levels. Pharmacopsychiatry 46(Suppl 1):S22–S29

    CAS  PubMed  Google Scholar 

  • Gelly J-C, Orgeur M, Jacq C, Lelandais G (2011) MitoGenesisDB: an expression data mining tool to explore spatio-temporal dynamics of mitochondrial biogenesis. Nucleic Acids Res 39:D1079–D1084

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Goldbeter A, Gérard C, Gonze D, Leloup J-C, Dupont G (2012) Systems biology of cellular rhythms. FEBS Lett 586:2955–2965

    Article  CAS  PubMed  Google Scholar 

  • Gulsuner S, Walsh T, Watts AC, Lee MK, Thornton AM, Casadei S, Rippey C, Shahin H, Consortium on the Genetics of Schizophrenia (COGS), PAARTNERS Study Group et al (2013) Spatial and temporal mapping of de novo mutations in schizophrenia to a fetal prefrontal cortical network. Cell 154:518–529

    Google Scholar 

  • Halberg F, Cornélissen G, Wilson D, Singh RB, De Meester F, Watanabe Y, Otsuka K, Khalilov E (2009) Chronobiology and chronomics: detecting and applying the cycles of nature. Biologist (London) 56:209–214

    Google Scholar 

  • Huang S, Wikswo J (2006) Dimensions of systems biology. Rev Physiol Biochem Pharmacol 157:81–104

    CAS  PubMed  Google Scholar 

  • Jack CR, Knopman DS, Jagust WJ, Petersen RC, Weiner MW, Aisen PS, Shaw LM, Vemuri P, Wiste HJ, Weigand SD et al (2013) Tracking pathophysiological processes in Alzheimer’s disease: an updated hypothetical model of dynamic biomarkers. Lancet Neurol 12:207–216

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jo S, Kim T, Im W (2007) Automated builder and database of protein/membrane complexes for molecular dynamics simulations. PLoS One 2:e880

    Article  PubMed Central  PubMed  Google Scholar 

  • Jonker MJ, Melis JPM, Kuiper RV, van der Hoeven TV, Wackers PFK, Robinson J, van der Horst GTJ, Dollé MET, Vijg J, Breit TM et al (2013) Life spanning murine gene expression profiles in relation to chronological and pathological aging in multiple organs. Aging Cell 12:901–909

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kim D-N, Altschuler J, Strong C, McGill G, Bathe M (2011) Conformational dynamics data bank: a database for conformational dynamics of proteins and supramolecular protein assemblies. Nucleic Acids Res 39:D451–D455

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Klevecz RR, Li CM, Marcus I, Frankel PH (2008) Collective behavior in gene regulation: the cell is an oscillator, the cell cycle a developmental process. FEBS J 275:2372–2384

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kopec AM, Carew TJ (2013) Growth factor signaling and memory formation: temporal and spatial integration of a molecular network. Learn Mem 20:531–539

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kronauer RE, Gunzelmann G, Van Dongen HPA, Doyle FJ, Klerman EB (2007) Uncovering physiologic mechanisms of circadian rhythms and sleep/wake regulation through mathematical modeling. J Biol Rhythms 22:233–245

    Article  PubMed  Google Scholar 

  • Kuchta K, Barszcz D, Grzesiuk E, Pomorski P, Krwawicz J (2012) DNAtraffic—a new database for systems biology of DNA dynamics during the cell life. Nucleic Acids Res 40:D1235–D1240

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kumari M, Chandola T, Brunner E, Kivimaki M (2010) A nonlinear relationship of generalized and central obesity with diurnal cortisol secretion in the Whitehall II study. J Clin Endocrinol Metab 95:4415–4423

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kurz FT, Aon MA, O’Rourke B, Armoundas AA (2010) Spatio-temporal oscillations of individual mitochondria in cardiac myocytes reveal modulation of synchronized mitochondrial clusters. Proc Natl Acad Sci U S A 107:14315–14320

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Li X, Blount PL, Vaughan TL, Reid BJ (2011) Application of biomarkers in cancer risk management: evaluation from stochastic clonal evolutionary and dynamic system optimization points of view. PLoS Comput Biol 7:e1001087

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Li M, Zeng T, Liu R, Chen L (2014) Detecting tissue-specific early warning signals for complex diseases based on dynamical network biomarkers: study of type 2 diabetes by cross-tissue analysis. Brief Bioinform 15:229–243

    Article  CAS  PubMed  Google Scholar 

  • Manor B, Lipsitz LA (2013) Physiologic complexity and aging: implications for physical function and rehabilitation. Prog Neuropsychopharmacol Biol Psychiatry 45:287–293

    Article  PubMed Central  PubMed  Google Scholar 

  • Milton J, Black D (1995) Dynamic diseases in neurology and psychiatry. Chaos 5:8–13

    Article  PubMed  Google Scholar 

  • Odgers CL, Mulvey EP, Skeem JL, Gardner W, Lidz CW, Schubert C (2009) Capturing the ebb and flow of psychiatric symptoms with dynamical systems models. Am J Psychiatry 166:575–582

    Article  PubMed  Google Scholar 

  • Patel VR, Eckel-Mahan K, Sassone-Corsi P, Baldi P (2012) CircadiOmics: integrating circadian genomics, transcriptomics, proteomics and metabolomics. Nat Methods 9:772–773

    Article  CAS  PubMed  Google Scholar 

  • Pezard L, Nandrino JL, Renault B, el Massioui F, Allilaire JF, Müller J, Varela F, Martinerie J (1996) Depression as a dynamical disease. Biol Psychiatry 39:991–999

    Article  CAS  PubMed  Google Scholar 

  • Pizarro A, Hayer K, Lahens NF, Hogenesch JB (2013) CircaDB: a database of mammalian circadian gene expression profiles. Nucleic Acids Res 41:D1009–D1013

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ramanujan VK, Herman BA (2007) Aging process modulates nonlinear dynamics in liver cell metabolism. J Biol Chem 282:19217–19226

    Article  CAS  PubMed  Google Scholar 

  • Reinhardt M, Elias J, Albert J, Frosch M, Harmsen D, Vogel U (2008) EpiScanGIS: an online geographic surveillance system for meningococcal disease. Int J Health Geogr 7:33

    Article  PubMed Central  PubMed  Google Scholar 

  • Santos A, Wernersson R, Jensen LJ (2015) Cyclebase 3.0: a multi-organism database on cell-cycle regulation and phenotypes. Nucleic Acids Res 43:D1140–D1144

    Article  PubMed Central  PubMed  Google Scholar 

  • Sato A, Sekine Y, Saruta C, Nishibe H, Morita N, Sato Y, Sadakata T, Shinoda Y, Kojima T, Furuichi T (2008) Cerebellar development transcriptome database (CDT-DB): profiling of spatio-temporal gene expression during the postnatal development of mouse cerebellum. Neural Netw 21:1056–1069

    Article  PubMed  Google Scholar 

  • Schiff SJ (2010) Towards model-based control of Parkinson’s disease. Philos Trans A Math Phys Eng Sci 368:2269–2308

    Article  PubMed Central  PubMed  Google Scholar 

  • Secrier M, Pavlopoulos GA, Aerts J, Schneider R (2012) Arena3D: visualizing time-driven phenotypic differences in biological systems. BMC Bioinf 13:45

    Article  Google Scholar 

  • Seltmann S, Stachelscheid H, Damaschun A, Jansen L, Lekschas F, Fontaine J-F, Nguyen-Dobinsky TN, Leser U, Kurtz A (2013) CELDA – an ontology for the comprehensive representation of cells in complex systems. BMC Bioinf 14:228

    Article  Google Scholar 

  • Shaffer DR, Scher HI (2003) Prostate cancer: a dynamic illness with shifting targets. Lancet Oncol 4:407–414

    Article  PubMed  Google Scholar 

  • Stahlhut Espinosa CE, Slack FJ (2006) The role of microRNAs in cancer. Yale J Biol Med 79:131–140

    PubMed Central  PubMed  Google Scholar 

  • Stephane M, Leuthold A, Kuskowski M, McClannahan K, Xu T (2012) The temporal, spatial, and frequency dimensions of neural oscillations associated with verbal working memory. Clin EEG Neurosci 43:145–153

    Article  PubMed  Google Scholar 

  • Sunkin SM, Ng L, Lau C, Dolbeare T, Gilbert TL, Thompson CL, Hawrylycz M, Dang C (2013) Allen Brain Atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic Acids Res 41:D996–D1008

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tretter F, Gebicke-Haerter PJ, an der Heiden U, Rujescu D, Mewes HW, Turck CW (2011) Affective disorders as complex dynamic diseases—a perspective from systems biology. Pharmacopsychiatry 44(Suppl 1):S2–S8

    Google Scholar 

  • Van der Kamp MW, Schaeffer RD, Jonsson AL, Scouras AD, Simms AM, Toofanny RD, Benson NC, Anderson PC, Merkley ED, Rysavy S et al (2010) Dynameomics: a comprehensive database of protein dynamics. Structure 18:423–435

    Article  PubMed Central  PubMed  Google Scholar 

  • Vandeput S, Verheyden B, Aubert AE, Van Huffel S (2012) Nonlinear heart rate dynamics: circadian profile and influence of age and gender. Med Eng Phys 34:108–117

    Article  CAS  PubMed  Google Scholar 

  • Yan Q (2014) From pharmacogenomics and systems biology to personalized care: a framework of systems and dynamical medicine. Methods Mol Biol 1175:3–17

    Article  PubMed  Google Scholar 

  • Zhang EE, Kay SA (2010) Clocks not winding down: unravelling circadian networks. Nat Rev Mol Cell Biol 11:764–776

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z, Chen D, Liu W, Racine JS, Ong S, Chen Y, Zhao G, Jiang Q (2011) Nonparametric evaluation of dynamic disease risk: a spatio-temporal kernel approach. PLoS One 6:e17381

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Yan, Q. (2015). Introduction: Cellular Rhythms and Networks in Systems and Dynamical Medicine. In: Cellular Rhythms and Networks. SpringerBriefs in Cell Biology. Springer, Cham. https://doi.org/10.1007/978-3-319-22819-8_1

Download citation

Publish with us

Policies and ethics