Skip to main content

Classical and Quantum Error-Correction Coding in Genetics

  • Chapter
Quantum Biological Information Theory

Abstract

The subject of this chapter is the use of classical/quantum information theory and coding in genetics and evolution. The chapter starts with the description of using the concepts from both classical and quantum information theories to describe the evolution of biological channel capacity through generations. In order to do so, several classical and quantum biological channel models are employed including the Markovian classical and Markovian-like quantum model, hybrid quantum-classical model, multilevel symmetric channel model, and Kimura model-based Markovian process. In order to describe the reliable long-time storage of genetic information in DNA, the use of unequal error protection (UEP) coding is studied. Several classes of error-correction codes suitable for UEP on a cellular level are described including nested coding, multilevel coding (MLC), rate-adaptive coding, and generalized LDPC coding. The use of concepts of constrained coding to describe the genetic information flow from DNA to proteins is also described as well as joint-constrained and error-correction coding. After that, the use of quantum error-correction concepts to deal with environmental errors including canonical quantum error-correction and stabilizer codes is briefly described. One particular class of stabilizer codes, known as topological codes, is then described that might be relevant to biological processes as they only involve the local qubits in encoding process. Another relevant class of codes, the subsystem codes, is then described. The key idea behind subsystem codes is to decompose the quantum code as the tensor product of two subsystems, exon subsystem A and intron subsystem B, and we are concerned with correcting errors only on the exon subsystem. Finally, we describe the use of nonbinary quantum stabilizer codes to deal with nucleobase substitution errors, both random and burst errors. We also briefly discuss the possible use of both classical and quantum error-correction concepts to improve tolerance to tumor and cancer introducing errors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yockey HP (1974) An application of information theory to the Central Dogma and the Sequence Hypothesis. J Theor Biol 46:369–406

    Article  Google Scholar 

  2. Forsdyke DR (1981) Are introns in-series error-detecting sequences? J Theor Biol 93:861–866

    Article  Google Scholar 

  3. Voss RF (1992) Evolution of long-range fractal correlation and 1/f noise in DNA base sequences. Phys Rev Lett 68:3805–3808

    Article  Google Scholar 

  4. Forsdyke DR (1995) Conservation of stem-loop potential in introns of snake venom phospholipase A2 genes. An application of FORS-D analysis. Mol Biol Evol 12:1157–1165

    Google Scholar 

  5. Battail G (1997) Does information theory explain biological evolution? Europhys Lett 40:343–348

    Article  Google Scholar 

  6. Cox JP (2001) Long-term data storage in DNA. Trends Biotechnol 19:247–250

    Article  Google Scholar 

  7. Bancroft C (2001) Long-term storage of information in DNA. Science 293:1763–1765

    Article  Google Scholar 

  8. Barbieri M (2003) The organic codes. Cambridge University Press, Cambridge

    Google Scholar 

  9. Lolle SJ, Victor JL, Young JM, Pruitt RE (2005) Genome-wide non-mendelian inheritance of extragenomic information in Arabidopsis. Nature 434:505–509

    Article  Google Scholar 

  10. Yockey HP (2005) Information theory, evolution and the origin of life. Cambridge University Press, New York

    Book  MATH  Google Scholar 

  11. Koruga D (2005) DNA as classical and quantum information system: implication to gene expression in normal and cancer cells. Arch Oncol 13:115–120

    Article  Google Scholar 

  12. Dawy Z, Hanus P, Weindl J, Dingel J, Morcoss F (2007) On genomic coding theory. Eur Trans Telecommun 18:873–879

    Article  Google Scholar 

  13. Battail G (2008) Information theory and error-correcting codes in genetics and biological evolution. In: Barbieri M (ed) Introduction to biosemiotics. Springer, Dordrecht, pp 299–345

    Google Scholar 

  14. Rocha ASL, Faria LCB, Kleinschmidt JH, Palazzo R, Silva-Filho MC (2010) DNA sequences generated by ℤ4-linear codes. In: 2010 I.E. International Symposium on Information Theory Proceedings (ISIT), pp 1320–1324, 13–18 June 2010

    Google Scholar 

  15. Faria LCB, Rocha ASL, Kleinschmidt JH, Palazzo R, Silva-Filho MC (2010) DNA sequences generated by BCH codes over GF(4). Electron Lett 46:203–204

    Article  Google Scholar 

  16. Vishwakarama R, Vishwakarma S, Banerjee A, Kumar R (2011) Message encoding in nucleotides. In: Wyld DC et al (eds) ACITY 2011, CCIS 198. Springer, Berlin, pp 185–191

    Google Scholar 

  17. Mian IS, Rose S (2011) Communication theory and molecular biology. Integr Biol 3:350–367

    Article  Google Scholar 

  18. Djordjevic IB (2012) Quantum biological channel modeling and capacity calculation. Life 2:377–391

    Article  Google Scholar 

  19. Koruga D (2012) Classical and quantum information processing in DNA-protein coding. In: Obradovic B (ed) Cell and tissue engineering. Springer, Berlin, pp 9–26

    Chapter  Google Scholar 

  20. Battail G (2014) Barbieri’s organic codes enable error correction of genomes. Biosemiotics 7:259–277

    Article  Google Scholar 

  21. Djordjevic IB (2012) Quantum information processing and quantum error correction. Elsevier, Amsterdam

    Google Scholar 

  22. Zurek ZH (1991) Decoherence and the transition from quantum to classical. Phys Today 44:36–44

    Article  Google Scholar 

  23. Cvijetic M, Djordjevic IB (2013) Advanced optical communication systems and networks. Artech House, Boston

    Google Scholar 

  24. Kimura M (1980) A simple method for estimating evolutionary rate in a finite population due to mutual production of neutral and nearly neutral base substitution through comparative studies of nucleotide sequences. J Mol Evol 16:111–120

    Article  Google Scholar 

  25. Purvis A, Bromham L (1997) Estimating the transition/transversion ratio from independent pairwise comparisons with an assumed phylogeny. J Mol Evol 44:112–119

    Article  Google Scholar 

  26. Tözeren A, Byers SW (2004) New biology for engineers and computer scientists. Pearson Education, Upper Saddle River

    Google Scholar 

  27. Bolsover SR, Shephard EA, White HA, Hyams JS (2011) Cell biology: a short course, 3rd edn. Wiley-Blackwell, Chichester

    Google Scholar 

  28. Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P (2007) Molecular biology of the cell, 5th edn. Garland Science, New York

    Google Scholar 

  29. Lodish H, Berk A, Kaiser CA, Krieger M, Bretscher A, Ploegh H, Amon A, Scott MP (2012) Molecular cell biology, 7th edn. W. H. Freeman, New York

    Google Scholar 

  30. Karp G (2007) Cell and molecular biology: concepts and experiments, 5th edn. Wiley, New York

    Google Scholar 

  31. Kapranov P, Willingham AT, Gingeras TR (2007) Genome-wide transcription and the implications for genomic organization. Nat Rev Genet 8:413–423

    Article  Google Scholar 

  32. Djebali S et al (2012) Landscape of transcription in human cells. Nature 489:101–108

    Article  Google Scholar 

  33. Yip KY et al (2012) Classification of human genomic regions based on experimentally determined binding sites of more than 100 transcription-related factors. Genome Biol 13:R48

    Article  Google Scholar 

  34. Skipper M, Dhand R, Campbell P (2012) Presenting ENCODE. Nature 489:45

    Article  Google Scholar 

  35. Imai H, Hirakawa S (1977) A new multilevel coding method using error correcting codes. IEEE Trans Inf Theory IT-23:371–377

    Article  Google Scholar 

  36. Djordjevic IB, Vasic B (2006) Multilevel coding in M-ary DPSK/differential QAM high-speed optical transmission with direct detection. J Lightwave Technol 24:420–428

    Article  Google Scholar 

  37. Djordjevic IB (2013) On the irregular nonbinary QC-LDPC-coded hybrid multidimensional OSCD-modulation enabling beyond 100 Tb/s optical transport. J Lightwave Technol 31:2969–2975

    Article  Google Scholar 

  38. Huang M-F, Tanaka A, Ip E, Huang Y-K, Qian D, Zhang Y, Zhang S, Ji PN, Djordjevic IB, Wang T, Aono Y, Murakami S, Tajima T, Xia TJ, Wellbrock GA (2014) Terabit/s nyquist superchannels in high capacity fiber field trials using DP-16QAM and DP-8QAM modulation formats. J Lightwave Technol 32:776–782

    Article  Google Scholar 

  39. Gho G-H, Kahn JM (2012) Rate-adaptive modulation and low-density parity-check coding for optical fiber transmission systems. J Opt Commun Networking 4:760–768

    Article  Google Scholar 

  40. Djordjevic IB, Wang T (2014) Multiple component codes based generalized LDPC codes for high-speed optical transport. Opt Express 22:16694–16705

    Article  Google Scholar 

  41. Lind D, Marcus B (1995) An introduction to symbolic dynamics and coding. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  42. Barbieri M (2012) Code biology-a new science of life. Biosemiotics 5:411–437

    Article  Google Scholar 

  43. Djordjevic IB, Vasic B (2006) Constrained coding techniques for suppression of intrachannel nonlinear effects in high-speed optical transmission. J Lightwave Technol 24:411–419

    Article  Google Scholar 

  44. Gaitan F (2008) Quantum error correction and fault tolerant quantum computing. CRC Press, Boca Raton

    Book  MATH  Google Scholar 

  45. MacKay DJC, Mitchison G, McFadden PL (2004) Sparse-graph codes for quantum error correction. IEEE Trans Inf Theory 50:2315–2330

    Article  MATH  MathSciNet  Google Scholar 

  46. Preskill J (2009) Ph219/CS219 Quantum computing (Lecture notes), Caltech 2009. http://theory.caltech.edu/people/preskill/ph229/

  47. Kitaev A (2002) Topological quantum codes and anyons. In: Quantum computation: a grand mathematical challenge for the twenty-first century and the millennium (Washington, DC, 2000). Proceedings of Symposium in Applied Mathematics, vol 58, American Mathematical Society, Providence, pp 267–272

    Google Scholar 

  48. Kitaev AY (2003) Fault-tolerant quantum computation by anyons. Annals Phys 303: 2–30. http://arxiv.org/abs/quant-ph/9707021

    Google Scholar 

  49. Bravyi SB, Kitaev AY (1998) Quantum codes on a lattice with boundary. http://arxiv.org/abs/quant-ph/9811052

  50. Bombin H (2010) Topological subsystem codes. Phys Rev A 81:032301-1–032301-15

    Article  MathSciNet  Google Scholar 

  51. Duclos-Cianci G, Poulin D (2010) Fast decoders for topological subsystem codes. Phys Rev Lett 104:050504-1–050504-4

    Article  Google Scholar 

  52. Duclos-Cianci G, Poulin D (2010) A renormalization group decoding algorithm for topological quantum codes. In: Proceedings of 2010 I.E. Information Theory Workshop-ITW 2010, Dublin, Ireland, 30 Aug 2010–3 Sept 2010

    Google Scholar 

  53. Suchara M, Bravyi S, Terhal B (2011) Constructions and noise threshold of topological subsystem codes. J Phys A Math Theor 44:155301

    Article  MathSciNet  Google Scholar 

  54. Sarvepalli P (2010) Topological color codes over higher alphabet. In: Proceedings of 2010 I.E. Information Theory Workshop-ITW 2010, Dublin, Ireland

    Google Scholar 

  55. Hernando F, O’Sullivan ME, Popovici E, Srivastava S (2010) Subfield-subcodes of generalized toric codes. In: Proceedings of ISIT 2010, pp 1125–1129, Austin, TX, USA

    Google Scholar 

  56. Bombin H (2010) Topological order with a twist: ising anyons from an abelian model. Phys Rev Lett 105:030403-1–030403-4

    Article  Google Scholar 

  57. Lofthouse JT (2005) Are biological cells Turing-compatible quantum computers? http://arxiv.org/html/physics/0502011

  58. Hameroff S, Hagan S, Tuszynski JA (2002) Quantum computation in brain microtubules: decoherence and biological feasibility. Phys Rev E 65:061901-1–061901-11

    Google Scholar 

  59. Behrman EC, Gaddam K, Steck JE, Skinner SR (2006) Microtubules as a quantum Hopfield network. In: Tuszynski JA (ed) The emerging physics of consciousness. Springer, New York, pp 351–370

    Chapter  Google Scholar 

  60. Sarvepalli PK (2008) Quantum stabilizer codes and beyond. PhD Dissertation, Texas A&M University

    Google Scholar 

  61. Aly Ahmed SAA (2008) Quantum error control codes. PhD Dissertation, Texas A&M University

    Google Scholar 

  62. Aly SA, Klappenecker A (2008) Subsystem code constructions. In: Proceedings of ISIT 2008, pp 369–373, Toronto, Canada

    Google Scholar 

  63. Bravyi S (2011) Subsystem codes with spatially local generators. Phys Rev A 83:012320-1–012320-9

    Article  Google Scholar 

  64. Klappenecker A, Sarvepalli PK (2007) On subsystem codes beating the quantum Hamming or Singleton Bound. Proc Math Phys Eng Sci 463:2887–2905

    Article  MATH  MathSciNet  Google Scholar 

  65. Lidar DA, Chuang IL, Whaley KB (1998) Decoherence-free subspaces for quantum computation. Phys Rev Lett 81:2594–2597

    Article  Google Scholar 

  66. Kwiat PG, Berglund AJ, Altepeter JB, White AG (2000) Experimental verification of decoherence-free subspaces. Science 290:498–501

    Article  Google Scholar 

  67. Viola L, Fortunato EM, Pravia MA, Knill E, Laflamme R, Cory DG (2001) Experimental realization of noiseless subsystems for quantum information processing. Science 293:2059–2063

    Article  Google Scholar 

  68. Ashikhmin A, Knill E (2001) Nonbinary quantum stabilizer codes. IEEE Trans Inf Theory 47:3065–3072

    Article  MATH  MathSciNet  Google Scholar 

  69. Ketkar A, Klappenecker A, Kumar S, Sarvepalli PK (2006) Nonbinary stabilizer codes over finite fields. IEEE Trans Inf Theory 52:4892–4914

    Article  MATH  MathSciNet  Google Scholar 

  70. Kim J-L, Walker J (2008) Nonbinary quantum error-correcting codes from algebraic curves. Discret Math 308:3115–3124

    Article  MATH  MathSciNet  Google Scholar 

  71. Sarvepalli PK, Klappenecker A (2005) Nonbinary quantum Reed-Muller codes. In: Proceedings of International Symposium on Information Theory 2005 (ISIT 2005), pp 1023–1027

    Google Scholar 

  72. Grass RN, Heckel R, Puddu M, Paunescu D, Stark WJ (2015) Robust chemical preservation of digital information on DNA in silica with error-correction codes. Angew Chem Int Ed 54:2552–2555

    Article  Google Scholar 

  73. Ogryzko V, Ozhigov Y (2014) Biologically inspired path to quantum computer. In: Proceedings of International Conference on Micro- and Nano-Electronics 2014, pp 94401N-1–94401N-9

    Google Scholar 

  74. Clelland CT, Risca V, Bancroft C (1999) Hiding messages in DNA microdots. Nature 399:533–534

    Article  Google Scholar 

  75. Wong PC, Wong K-K, Foote H (2003) Organic data memory using the DNA approach. Commun ACM 46:95–98

    Article  Google Scholar 

  76. Heider D, Barnekow A (2007) DNA-based watermarks using the DNA-Crypt algorithm. BMC Bioinf 8:176

    Article  Google Scholar 

  77. Heider D, Pyka M, Barnekow A (2009) DNA watermarks in non-coding regulatory sequences. BMC Res Notes 2:125

    Article  Google Scholar 

  78. Jupiter DC, Ficht TA, Samuel J, Qin Q-M, de Figueiredo P (2010) DNA watermarking of infectious agents: progress and prospects. PLoS Pathog 6:e1000950

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Djordjevic, I.B. (2016). Classical and Quantum Error-Correction Coding in Genetics. In: Quantum Biological Information Theory. Springer, Cham. https://doi.org/10.1007/978-3-319-22816-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-22816-7_6

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-22815-0

  • Online ISBN: 978-3-319-22816-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics