Skip to main content

Quantum-Mechanical Modeling of Mutations, Aging, Evolution, Tumor, and Cancer Development

  • Chapter
Quantum Biological Information Theory
  • 1607 Accesses

Abstract

In this chapter, we will describe the quantum-mechanical models to accurately describe the process of creation of spontaneous, induced, and adaptive mutations. These models will be used to describe the processes of evolution and aging. The various theories of quantum evolution and epievolution will be studied as well. We then describe the Markovian chain-like classical and quantum-mechanical modeling of mutations and aging. In the same section, the hybrid quantum-classical biological channel model with memory is described as well. After that, various classical, semiclassical, and quantum models of cancer development are studied. The final section concludes the chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. McFadden J, Al-Khalili J (1999) A quantum mechanical model of adaptive mutation. Biosystems 50:203–211

    Article  Google Scholar 

  2. McFadden J (2000) Quantum evolution. W.W. Norton, New York

    Google Scholar 

  3. Koonin EV, Wolf YI (2009) Is evolution Darwinian or/and Lamarckian? Biol Direct 4:42

    Article  Google Scholar 

  4. Jablonka E, Raz G (2009) Transgenerational epigenetic inheritance: prevalence, mechanisms, and implications for the study of heredity and evolution. Q Rev Biol 84:131–176

    Article  Google Scholar 

  5. Asano M, Ohya M, Tanaka Y, Basieva I, Khrennikov A (2011) Dynamics of entropy in quantum-like model of decision making. J Theor Biol 281:56–64

    Article  MathSciNet  Google Scholar 

  6. Djordjevic IB (2012) Quantum biological channel modeling and capacity calculation. Life 2:377–391

    Article  Google Scholar 

  7. Asano M, Basieva I, Khrennikov A, Ohya M, Tanaka Y (2013) A model of epigenetic evolution based on theory of open quantum systems. Syst Synth Biol 7:161–173

    Article  Google Scholar 

  8. Bordorano M, Ogryzko V (2013) Quantum biology at the cellular level-elements of the research program. Biosystems 112:11–30

    Article  Google Scholar 

  9. Khrennikov A (2011) quantum-like model of processing of information in the brain based on classical electromagnetic field. Biosystems 105:250–262

    Article  Google Scholar 

  10. Koonin EV, Wolf YI (2012) Evolution of microbes and viruses: a paradigm shift in evolutionary biology? Front Cell Infect Microbiol 2:119-1–119-15

    Article  Google Scholar 

  11. Sollars V, Lu X, Xiao L, Wang X, Garfinkel MD, Ruden DM (2003) Evidence for an epigenetic mechanism by which HSP90 acts as a capacitor for morphological evolution. Nat Genet 33:70–74

    Article  Google Scholar 

  12. Russel PJ (2011) iGenetics: a molecular approach, 3rd edn. Pearson Benjamin Cummings, San Francisco

    Google Scholar 

  13. Darwin C (1859) On the origin of species. Murray, London

    Google Scholar 

  14. Lamarck JB (1809) Zoological philosophy: exposition with regard to the natural history of animals. Dentu, Paris (in French)

    Google Scholar 

  15. Foster PL (1993) Adaptive mutation: the uses of adversity. Annu Rev Microbiol 47:467–504

    Article  Google Scholar 

  16. Rosenberg SM (2001) Evolving responsively: adaptive mutation. Nat Rev Genet 2:504–515

    Article  Google Scholar 

  17. Roth JR, Kugelberg E, Reams AB, Kofoid E, Andersson DI (2006) Origin of mutations under selection: the adaptive mutation controversy. Annu Rev Microbiol 60:477–501

    Article  Google Scholar 

  18. TenaillonO DE, Matic I (2004) Evolutionary significance of stress induced mutagenesis in bacteria. Trends Microbiol 12:264–270

    Article  Google Scholar 

  19. Cairns J, Foster PL (1991) Adaptive reversion of a frameshift mutation in Escherichia coli. Genetics 128:695–701

    Google Scholar 

  20. Foster PL (2005) Stress responses and genetic variation in bacteria. Mutat Res 569:3–11

    Article  Google Scholar 

  21. Foster PL (2007) Stress-induced mutagenesis in bacteria. Crit Rev Biochem Mol Biol 42:373–397

    Article  Google Scholar 

  22. MacLean RC, Torres-Barceló C, Moxon R (2013) Evaluating evolutionary models of stress-induced mutagenesis in bacteria. Nat Rev Genet 14:221–227

    Article  Google Scholar 

  23. Schrödinger E (1967) What is life? and mind and matter. Cambridge University Press, New York (12th reprint, 2012)

    Google Scholar 

  24. Bianconi G, Rahmede CA (2011) Unified framework for quasispecies evolution and stochastic quantization. Phys Rev E Stat Nonlin Soft Matter Phys 83:056104

    Article  Google Scholar 

  25. Bianconi G, Rahmede CA (2012) Comparison between the quasi-species evolution and stochastic quantization of fields. Eur Phys J B 85:197

    Article  Google Scholar 

  26. Bianconi G, Rahmede CA (2012) Quantum mechanics formalism for biological evolution. Chaos, Solitons Fractals 45:555–560

    Article  MathSciNet  Google Scholar 

  27. Martin-Delgado MA (2012) On quantum effects in a theory of biological evolution. Sci Rep 2:302-1–302-8

    Article  Google Scholar 

  28. Löwdin PO (1966) Quantum genetics and the aperiodic solid: some aspects on the biological problems of heredity, mutations, aging, and tumors in view of the quantum theory of the DNA molecule. In: Löwdin PO (ed) Advances in quantum chemistry, vol 2. Academic, New York, pp 213–360

    Google Scholar 

  29. Watson JD, Crick FHC (1953) Genetical implications of the structure of deoxyribonucleic acid. Nature 171:964–967

    Article  Google Scholar 

  30. Zurek ZH (1991) Decoherence and the transition from quantum to classical. Phys Today (October 1991):36–44

    Google Scholar 

  31. Ogryzko V On two quantum approaches to adaptive mutations in bacteria. http://arxiv.org/ftp/arxiv/papers/0805/0805.4316.pdf

  32. Rooney DP (2012) Control of finite-dimensional quantum systems under Lindblad dissipation. Ph.D. Dissertation, The University of Michigan

    Google Scholar 

  33. Ogryzko V (2014) Comment on Masanari Asano et al.: a model of epigenetic evolution based on theory of open quantum systems. Syset Synth Biol 8:161–163

    Article  Google Scholar 

  34. Cvijetic M, Djordjevic IB (2013) Advanced optical communication systems and networks. Artech House, Boston/London

    Google Scholar 

  35. Caceres MO, Caceres-Saez I (2011) Random Leslie matrices in population dynamics. J Math Biol 63:519–556

    Article  MATH  MathSciNet  Google Scholar 

  36. Kimura M (1968) Evolutionary rate at the molecular level. Nature 217:624–626

    Article  Google Scholar 

  37. Kimura M (1983) The neutral theory of molecular evolution. Cambridge University Press, Cambridge

    Book  Google Scholar 

  38. Yockey HP (2005) Information theory, evolution and the origin of life. Cambridge University Press, New York

    Book  MATH  Google Scholar 

  39. Le Bellac M (2006) A short introduction to quantum information and quantum computation. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  40. Djordjevic IB (2012) Quantum information processing and quantum error correction. Elsevier, Boston

    Google Scholar 

  41. Koruga D (2005) DNA as classical and quantum information system: implication to gene expression in normal and cancer cells. Arch Oncol 13:115–120

    Article  Google Scholar 

  42. Koruga D (2012) Classical and quantum information processing in DNA-protein coding. In: Obradovic B (ed) Cell and tissue engineering. Springer, Berlin, pp 9–26

    Chapter  Google Scholar 

  43. Friedberg EC (2003) DNA damage and repair. Nature 421:436–440

    Article  Google Scholar 

  44. Johnson G (2010) Unearthing prehistoric tumors, and debate. The New York Times, 28 December 2010

    Google Scholar 

  45. Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P (2002) Molecular biology of the cell, 4th edn. Garland Science, New York

    Google Scholar 

  46. Johnson RE, Washington MT, Prakash S, Prakash L (2000) Fidelity of human DNA polymerase η. J Biol Chem 275:7447–7450

    Article  Google Scholar 

  47. Plankar M, Jerman I, Krašovec R (2011) On the origin of cancer: can we ignore coherence? Prog Biophys Mol Biol 106:380–390

    Article  Google Scholar 

  48. Sobhani ME, Molla AW, Rahman S (2010) A review on biomolecule basis of the role of psychological stress in the development and progression of cancer. Mag Eur Med Oncol 3:136–141

    Article  Google Scholar 

  49. Rhaman S, Islam F, Mamun A, Abdul-Awal SM (2014) Evolution of cancer: a quantum mechanical approach. Eur J Biophys 2:38–48

    Article  Google Scholar 

  50. Seyfried TN, Flores RE, Poff AM, D’Agostino DP (2013) Cancer as a metabolic disease: implications for novel therapeutics. Carcinogenesis 35:515–527

    Article  Google Scholar 

  51. Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100:57–70

    Article  Google Scholar 

  52. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674

    Article  Google Scholar 

  53. Warburg O (1956) On the origin of cancer cells. Science 123:309–314

    Article  Google Scholar 

  54. Paduch R (2014) Theories of cancer origin. Eur J Cancer Prev 24:57–67

    Article  Google Scholar 

  55. Soto AM, Sonnenschein C (2004) The somatic mutation theory of cancer: growing problems with the paradigm? Bioessays 26:1097–1107

    Article  Google Scholar 

  56. Nowell P (1976) The clonal evolution of tumor cell populations. Science 194:23–28

    Article  Google Scholar 

  57. Loeb LA (1991) Mutator phenotype may be required for multistage carcinogenesis. Cancer Res 51:3075–3079

    Google Scholar 

  58. Holland AJ, Cleveland DW (2009) Boveri revisited: chromosomal instability, aneuploidy and tumorigenesis. Nat Rev Mol Cell Biol 10:478–487

    Article  Google Scholar 

  59. Boveri T (2008) Concerning the origin of malignant tumors by Theodor Boveri. Translated and annotated by Henry Harris. J Cell Sci 121:1–84

    Article  Google Scholar 

  60. Ingber DE (2008) Can cancer be reversed by engineering the tumor microenvironment? Semin Cancer Biol 18:356–364

    Article  Google Scholar 

  61. Feinberg AP, Ohlsson R, Henikoff S (2006) The epigenetic progenitor origin of human cancer. Nat Rev Genet 7:21–33

    Article  Google Scholar 

  62. Jaenisch R, Bird A (2003) Cancer stem cells in solid tumors: accumulating evidence and unresolved questions. Nat Genet 33:245–253

    Article  Google Scholar 

  63. Dawson MA, Kouzarides T (2012) Cancer epigenetics: from mechanism to therapy. Cell 150:12–27

    Article  Google Scholar 

  64. Nicolis G, Prigogine I (1977) Self-organization in Non-equilibrium systems: from dissipative structures to order through fluctuations. Willey, New York

    Google Scholar 

  65. Feltz B, Crommelinck M, Goujon P (eds) (2006) Self-organization and emergence in life sciences. Springer, Dordrecht

    Google Scholar 

  66. Kreeger PK, Lauffenberger DA (2010) Cancer systems biology: a network modeling perspective. Carcinogenesis 31:2–8

    Article  Google Scholar 

  67. Huang S, Ingber DE (2007) A non-genetic basis for cancer progression and metastasis: self-organizing attractors in cell regulatory networks. Breast Dis 26:27–54

    Google Scholar 

  68. Huang S, Ernberg I, Kauffman S (2009) Cancer attractors: a systems view of tumors from a gene network dynamics and developmental perspective. Semin Cell Dev Biol 20:869–876

    Article  Google Scholar 

  69. Sonnenschein C, Soto AM (2008) Theories of carcinogenesis: an emerging perspective. Semin Cancer Biol 18:372–377

    Article  Google Scholar 

  70. Hameroff SR (2004) A new theory of the origin of cancer: quantum coherent entanglement, centrioles, mitosis, and differentiation. Biosystems 77:119–136

    Article  Google Scholar 

  71. Fröhlich H (1978) Coherent electric vibrations in biological systems and the cancer problem. IEEE Trans Microwave Theory Tech 26:613–617

    Article  Google Scholar 

  72. Berretta R, Moscato P (2010) Cancer biomarker discovery: the Entropic hallmark. PLoS One 5:e12262-1–e12262-44

    Article  Google Scholar 

  73. Acebo P, Giner D, Calvo P, Blanco-Rivero A, Ortega AD, Fernandez PL, Roncador G, Fernandez-Malave E, Chamorro M, Cuezva JM (2009) Cancer abolishes the tissue type-specific differences in the phenotype of energetic metabolism. Transl Oncol 2:138–145

    Article  Google Scholar 

  74. Warburg O (1930) The metabolism of tumors. Constable and Company Ltd., London

    Google Scholar 

  75. Schafer PW (1969) Centrioles of a human cancer: intercellular order and intracellular disorder. Science 164:1300–1303

    Article  Google Scholar 

  76. Schafer PW (1975) Centrioles: intercellular order in normal and malignant cells. J Thorac Cardiovasc Surg 63:472–477

    Google Scholar 

  77. Kramer A, Neben K, Ho AD (2002) Centrosome replication, genomic instability and cancer. Leukemia 16:767–775

    Article  Google Scholar 

  78. Nigg EA, Stearns T (2011) The centrosome cycle: centriole biogenesis, duplication and inherent asymmetries. Nat Cell Biol 13:1154–1160

    Article  Google Scholar 

  79. Huston RL (2014) On centrioles, microtubules, and cellular electromagnetism. J Nanotechnol Eng Med 5:031003-1–031003-5

    Article  Google Scholar 

  80. Huston RL (2015) Using the electromagnetics of cancer’s centrosome cluster to attract therapeutic nanoparticles. Adv Biosci Biotechnol 6:172–181

    Article  Google Scholar 

  81. McCaig CD, Rajnicek AM, Song B, Zhao M (2005) Controlling cell behavior electrically: current views and future potential. Physiol Rev 86:943–978

    Article  Google Scholar 

  82. Rahnama M, Tuszynski JA, Bokkon I, Cifra M, Sardar P, Salari V (2011) Emission of mitochondrial biophotons and their effect on electrical activity of membrane via microtubules. J Integr Neurosci 10:65–88

    Article  Google Scholar 

  83. Hagan S, Hameroff SR, Tuszyński JA (2002) Quantum computation in brain microtubules: decoherence and biological feasibility. Phys Rev E Stat Nonlin Soft Matter Phys 65:061901-1–061901-11

    Article  Google Scholar 

  84. Mavromatos NE, Mershin A, Nanopoulos DV (2002) QED-cavity model of microtubules implies dissipationless energy transfer and biological quantum teleportation. Inter J Mod Physics B 16:3623–3642

    Article  Google Scholar 

  85. Tuszynski JA, Hameroff S, Sataric MV, Trpisova B, Nip MLA (1995) Ferroelectric behavior in microtubule dipole lattices: implications for information processing, signaling and assembly/disassembly. J Theor Biol 174:371–380

    Article  Google Scholar 

  86. Albrecht-Buehler G (1997) Autofluorescence of live purple bacteria in the near infrared. Exp Cell Res 236:43–50

    Article  Google Scholar 

  87. Albrecht-Buehler G (1994) Cellular infrared detector appears to be contained in the centrosome. Cell Motil Cytoskeleton 27:262–271

    Article  Google Scholar 

  88. Atanasov A (2014) Possible role of centrioles as sensor center in cells. Trakia J Sci 12:74–78

    Google Scholar 

  89. Pokorný J, Hašek J, Jelínek F (2005) Electromagnetic field of microtubules: effects on transfer of mass particles and electrons. J Biol Phys 31:501–514

    Article  Google Scholar 

  90. Popp F-A, Beloussov L (eds) (2003) Integrative biophysics: biophotonics. Kluwer, Dordrecht

    Google Scholar 

  91. Van Wijk R (2001) Bio-photons and bio-communication. J Sci Explor 15:183–197

    Google Scholar 

  92. Popp F-A (2009) Cancer growth and its inhibition in terms of coherence. Electromagn Biol Med 28:53–60

    Article  Google Scholar 

  93. Jaynes ET, Cummings FW (1963) Comparison of quantum and semiclassical radiation theories with application to the beam maser. Proc IEEE 51:89–109

    Article  Google Scholar 

  94. Scully MO, Zubairy MS (1997) Quantum optics. Cambridge University Press, Cambridge

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Djordjevic, I.B. (2016). Quantum-Mechanical Modeling of Mutations, Aging, Evolution, Tumor, and Cancer Development. In: Quantum Biological Information Theory. Springer, Cham. https://doi.org/10.1007/978-3-319-22816-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-22816-7_5

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-22815-0

  • Online ISBN: 978-3-319-22816-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics