Skip to main content

Quantum Information Theory and Quantum Mechanics-Based Biological Modeling and Biological Channel Capacity Calculation

  • Chapter
Book cover Quantum Biological Information Theory
  • 1650 Accesses

Abstract

The quantum biological channel models suitable for the study of quantum information transfer from DNA to proteins have been described based on codon transition probabilities. The sources of genetic noise and genetic errors have been described as well. The quantum genetic noise has been described in terms of tautomeric nucleic base-pair formation. Various sources of genetic errors and genetic noise have also been described using quantum-mechanical formalism. The quantum biological channel capacity evaluation has been further described. The next part of the chapter is devoted to the use of quantum-mechanical concepts to describe the bird navigation compass. Finally, the quantum-mechanical aspects of photosynthesis have been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wannier GH (1987) Statistical physics. Dover, New York (reprint)

    Google Scholar 

  2. Haynie DT (2008) Biological thermodynamics, 2nd edn. Cambridge University Press, Cambridge

    Book  Google Scholar 

  3. Wolfe J (2002) Cellular thermodynamics. In: Encyclopedia of life sciences. Macmillan/Nature Publishing Group, London

    Google Scholar 

  4. Bray D (1995) Protein molecules as computational elements in living cells. Nature 376:307–312

    Article  Google Scholar 

  5. Regev A, Shapiro E (2002) Cellular abstractions: cells as computation. Nature 419:343

    Article  Google Scholar 

  6. Yuh CH, Bolouri H, Davidson EH (1998) Genomic cis-regulatory logic: functional analysis and computational model of a sea urchin gene control system. Science 279:1896–1902

    Article  Google Scholar 

  7. Yockey HP (1974) An application of information theory to the Central Dogma and the Sequence Hypothesis. J Theor Biol 46:369–406

    Article  Google Scholar 

  8. Yockey HP (2005) Information theory, evolution and the origin of life. Cambridge University Press, New York

    Book  MATH  Google Scholar 

  9. Nakano T, Eckford AW, Haraguchi T (2013) Molecular communication. Cambridge University Press, Cambridge

    Book  Google Scholar 

  10. Ball P (2011) Physics of life: the dawn of quantum biology. Nature 474:272–274

    Article  Google Scholar 

  11. Haydon N, McGlynn SE, Robus O (2011) Speculation on quantum mechanics and the operation of life giving catalysts. Orig Life Evol Biosph 41:35–50

    Article  Google Scholar 

  12. Karafyllidis IG (2008) Quantum mechanical model for information transfer from DNA to protein. Biosystems 93:191–198

    Article  Google Scholar 

  13. Vaziri A, Plenio MB (2010) Quantum coherence in ion channels: resonances, transport and verification. New J Phys 12:085001

    Article  Google Scholar 

  14. Ogryzko VV (2008) Erwin Schroedinger, Francis Crick and epigenetic stability. Biol Direct 3:15

    Article  Google Scholar 

  15. Davies P (2005) A quantum recipe for life. Nature 437:819

    Article  Google Scholar 

  16. Davies PCW (2004) Does quantum mechanics play a non-trivial role in life? Biosystems 78:69–79

    Article  Google Scholar 

  17. Van Grondelle R, Novoderezhkin VI (2010) Quantum design for a light trap. Nature 463:614–615

    Article  Google Scholar 

  18. Gauger EM, Rieper E, Morton JJL, Benjamin SC, Vedral V (2011) Sustained quantum coherence and entanglement in the avian compass. Phys Rev Lett 106:040503

    Article  Google Scholar 

  19. Djordjevic IB (2012) Quantum information processing and quantum error correction. Elsevier/Academic, Amsterdam

    Google Scholar 

  20. Arndt M, Juffmann T, Vedral V (2009) Quantum physics meets biology. HFSP J 3:386–400

    Article  Google Scholar 

  21. Löwdin PO (1966) Quantum genetics and the aperiodic solid: some aspects on the biological problems of heredity, mutations, aging, and tumors in view of the quantum theory of the DNA molecule. In: Löwdin PO (ed) Advances in quantum chemistry, vol 2. Academic, New York, pp 213–360

    Google Scholar 

  22. Rieper E, Anders J, Vedral V (2012) Quantum entanglement between the electron clouds of nucleic acids in DNA. http://arxiv.org/abs/1006.4053. Accessed 5 Dec 2012

  23. Patel A (2001) Quantum algorithms and the genetic code. Pramana J Phys 56:367–381

    Article  Google Scholar 

  24. Watson JD, Crick FHC (1953) Genetical implications of the structure of deoxyribonucleic acid. Nature 171:964–967

    Article  Google Scholar 

  25. Johnson RE, Washington MT, Prakash S, Prakash L (2000) Fidelity of human DNA polymerase η. J Biol Chem 275:7447–7450

    Article  Google Scholar 

  26. Smolinski MS, Hamburg MA, Lederberg J (2003) Microbial threats to health: emergence, detection, and response. National Academies Press, Washington

    Google Scholar 

  27. Bianconi G, Rahmede C (2011) Unified framework for quasi-species evolution and stochastic quantization. Phys Rev E 83:056104

    Article  Google Scholar 

  28. Bianconi G, Rahmede CA (2012) Comparison between the quasi-species evolution and stochastic quantization of fields. Eur Phys J B 85:197

    Article  Google Scholar 

  29. Bianconi G, Rahmede C (2012) Quantum mechanics formalism for biological evolution. Chaos Solitons Fractals 45:555–560

    Article  MathSciNet  Google Scholar 

  30. Djordjevic IB (2012) Quantum biological channel modeling and capacity calculation. Life 2:377–391

    Article  Google Scholar 

  31. Morris SC (2003) The navigation of biological hyperspace. Int J Astrobiol 2:149–152

    Article  Google Scholar 

  32. Foster PL (1993) Adaptive mutation: the uses of adversity. Annu Rev Microbiol 47:467–504

    Article  Google Scholar 

  33. Rosenberg SM (2001) Evolving responsively: adaptive mutation. Nat Rev Genet 2:504–515

    Article  Google Scholar 

  34. Roth JR, Kugelberg E, Reams AB, Kofoid E, Andersson DI (2006) Origin of mutations under selection: the adaptive mutation controversy. Annu Rev Microbiol 60:477–501

    Article  Google Scholar 

  35. Foster PL (2007) Stress-induced mutagenesis in bacteria. Crit Rev Biochem Mol Biol 42:373–397

    Article  Google Scholar 

  36. Sakurai JJ (1994) Quantum mechanics, 2nd edn. Addison-Wesley, Reading

    Google Scholar 

  37. Rein R, Harris FE (1965) Studies of hydrogen-bonded systems. Potential-energy surface, tunneling, and tautomeric equilibria in the H-N⋯N and O⋯H-N bonds of the guanine-cytosine base pair. J Chem Phys 43:4415–4421

    Article  Google Scholar 

  38. Lunell S, Sperber G (1967) Study of the hydrogen bonding in the adenine-thymine, adenine-cytosine, and guanine-thymine base pairs. J Chem Phys 46:2119–2124

    Article  Google Scholar 

  39. Parker BR, van Every J (1971) Quantum tunneling in DNA. Chem Phys Lett 8:94–99

    Article  Google Scholar 

  40. Tolpygo KB, Olkhovskaya IP (1972) Proton transitions in the hydrogen bonds of the DNA base pairs. Chem Phys Lett 16:550–554

    Article  Google Scholar 

  41. Grant Cooper W (2012) Coherent states as consequences of keto-amino → enol-imine hydrogen bond arrangements driven by quantum uncertainty limits on amino DNA protons. Int J Quantum Chem 112:2301–2323

    Article  Google Scholar 

  42. Godbeer AD, Al-Khalili JD, Stevenson PD (2014) Environment-induced dephasing versus von Neumann measurements in proton tunneling. Phys Rev 90:012102

    Article  Google Scholar 

  43. Wiltschko W (1968) Über den Einfluss statischer Magnetfelder auf die Zugorientierung der Rotkehlchen (Erithacus rubecula). Z Tierpsychol 25:537–558

    Article  Google Scholar 

  44. Elmen S, Wiltschko W, Demong N, Wiltschko R (1976) Magnetic direction finding: evidence for its use in migratory indigo buntings. Science 193:505–508

    Article  Google Scholar 

  45. Wiltschko R, Wiltschko W (2006) Magnetoreception. Bioessays 28:157–168

    Article  Google Scholar 

  46. Wiltschko W, Wiltschko R (2005) Magnetic orientation and magnetoreception in birds and other animals. J Comp Physiol A 191:675–693

    Article  Google Scholar 

  47. Ritz T, Adem S, Schulten K (2000) A model for photoreceptor-based magnetoreception in birds. Biophys J 78:707–718

    Article  Google Scholar 

  48. Ritz T, Dommer DH, Phillips JB (2002) Shedding light on vertebrate magnetoreception. Neuron 34:503–506

    Article  Google Scholar 

  49. Brocklehurst B (2002) Magnetic fields and radical reactions: recent developments and their role in nature. Chem Soc Rev 31:301–311

    Article  Google Scholar 

  50. Johnsen S, Lohmann KJ (2005) The physics and neurobiology of magnetoreception. Nat Rev Neurosci 6:703–712

    Article  Google Scholar 

  51. Mouritsen H, Ritz T (2005) Magnetoreception and its use in bird navigation. Curr Opin Neurobiol 15:406–414

    Article  Google Scholar 

  52. Johnsen S, Lohmann KJ (2008) Magnetoreception in animals. Phys Today 61:29–35

    Article  Google Scholar 

  53. Rodgers CT, Hore PJ (2009) Chemical magnetoreception in birds: the radical pair mechanism. Proc Natl Acad Sci U S A 106:353–360

    Article  Google Scholar 

  54. Wiltschko R, Wiltschko W (2014) Sensing magnetic directions in birds: radical pair processes involving cryptochrome. Biosensors 4:221–242

    Article  Google Scholar 

  55. Nießner C, Denzau S, Stapput K, Ahmad M, Peichl L, Wiltschko W, Wiltschko R (2013) Magnetoreception: activated cryptochrome 1a concurs with magnetic orientation in birds. J R Soc Interface 10:20130638. doi:10.1098/rsif.2013.0638

    Article  Google Scholar 

  56. Müller P, Ahmad M (2011) Light-activated cryptochrome reacts with molecular oxygen to form a flavin-superoxide radical pair consistent with magnetoreception. J Biol Chem 286:21033–21040

    Article  Google Scholar 

  57. Maeda K, Henbest KB, Cintolesi F, Kuprov I, Rodgers CT, Liddell PA, Gust D, Timmel CR, Hore PJ (2008) Chemical compass model of avian magnetoreception. Nature 453:387–390

    Article  Google Scholar 

  58. Solov’yov IA, Ritz T, Schulten K, Hore PJ (2014) A chemical compass for bird navigation. In: Mohsheni M, Engel GS, Plenio MB (eds) Quantum effects in biology. Cambridge University Press, Cambridge, pp 218–236

    Google Scholar 

  59. Hu X, Damjanovic A, Ritz T, Schulten K (1998) Architecture and mechanism of the light harvesting apparatus of purple bacteria. Proc Natl Acad Sci U S A 95:5935–5941

    Article  Google Scholar 

  60. Hu X, Ritz T, Damjanovic A, Authenrieth F, Schulten K (2002) Photosynthetic apparatus of purple bacteria. Q Rev Biophys 35:1–62

    Article  Google Scholar 

  61. Geyer T, Helms V (2006) Reconstruction of a kinetic model of the chromatophore vesicles from Rhodobacter sphaeroides. Biophys J 91:927–937

    Article  Google Scholar 

  62. Strümpfer J, Hsin J, Şener M, Chandler D, Schulten K (2011) Chapter 2: The light-harvesting apparatus in purple photosynthetic bacteria: introduction to a quantum biological device. In: Roux B (ed) Molecular machines. World Scientific, Singapore, pp 19–48

    Chapter  Google Scholar 

  63. Engel GS (2014) Direct observation of quantum coherence. In: Mohsheni M, Engel GS, Plenio MB (eds) Quantum effects in biology. Cambridge University Press, Cambridge, pp 144–158

    Google Scholar 

  64. Kosztin I, Schulten K (2014) A chemical compass for bird navigation. In: Mohsheni M, Engel GS, Plenio MB (eds) Quantum effects in biology. Cambridge University Press, Cambridge, pp 123–143

    Google Scholar 

  65. Mosheni M, Aspuru-Guzik A, Rebentrost P, Shabani A, Lloyd S, Huelga SF, Plenio MB (2014) Environment-assisted quantum transport. In: Mohsheni M, Engel GS, Plenio MB (eds) Quantum effects in biology. Cambridge University Press, Cambridge, pp 159–176

    Google Scholar 

  66. Romero E, Novoderezhkin VI, van Grondelle R (2014) Excitation energy transfer and energy conversion in photosynthesis. In: Mohsheni M, Engel GS, Plenio MB (eds) Quantum effects in biology. Cambridge University Press, Cambridge, pp 179–197

    Google Scholar 

  67. Bozo J (2007) Bioenergetics: basic principles. Gradjevinska Knjiga, Zrenjanin (in Serbian)

    Google Scholar 

  68. May V, Kühn O (2011) Charge and energy transfer dynamics in molecular systems. Wiley, Weinheim

    Book  Google Scholar 

  69. Lambert N, Chen Y-N, Cheng Y-C, Li C-M, Chen G-Y, Nori F (2013) Quantum biology. Nat Phys 9:10–18 (Review article)

    Article  Google Scholar 

  70. Engel GS, Calhoun TR, Read EL, Ahn T-K, Mančal T, Cheng Y-C, Blankenship RE, Fleming GR (2007) Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems. Nature 446:782786

    Article  Google Scholar 

  71. Ishizaki A, Fleming GR (2009) Theoretical examination of quantum coherence in a photosynthetic system at physiological temperature. Proc Natl Acad Sci U S A 106:17255–17260

    Article  Google Scholar 

  72. Yen T-C, Cheng Y-C (2011) Electronic coherence effects in photosynthetic light harvesting. Proc Chem 3:211221

    Google Scholar 

  73. Trixler F (2013) Quantum tunneling to the origin and evolution of life. Curr Organ Chem 17:1758–1770

    Article  Google Scholar 

  74. Egawa A, Fujiwara T, Mizoguchi T, Kakitani Y, Koyama Y, Akutsu H (2007) Structure of the light-harvesting bacteriochlorophyll c assembly in chlorosomes from Chlorobium limicola determined by solid-state NMR. Proc Natl Acad Sci U S A 104:790–795

    Article  Google Scholar 

  75. Hayes D, Engel GS (2011) Extracting the excitonic Hamiltonian of the Fenna-Matthews-Olson complex using three-dimensional third-order electronic spectroscopy. Biophys J 100:2043–2052

    Article  Google Scholar 

  76. Shabani A, Mohseni M, Rabitz H, Lloyd S (2014) Numerical evidence for robustness of environment-assisted quantum transport. Phys Rev E 89:042706

    Article  Google Scholar 

  77. Shabani A, Mohseni M, Rabitz H, Lloyd S (2012) Efficient estimation of energy transfer efficiency in light-harvesting complexes. Phys Rev E 86:011915

    Article  Google Scholar 

  78. MacColl R (1998) Cyanobacterial phycobilisomes. J Struct Biol 124:311–334

    Article  Google Scholar 

  79. Guan X, Qin S, Zhao F, Zhang X, Tang X (2007) Phycobilisomes linker family in cyanobacterial genomes: divergence and evolution. Int J Biol Sci 3:434–445

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Djordjevic, I.B. (2016). Quantum Information Theory and Quantum Mechanics-Based Biological Modeling and Biological Channel Capacity Calculation. In: Quantum Biological Information Theory. Springer, Cham. https://doi.org/10.1007/978-3-319-22816-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-22816-7_4

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-22815-0

  • Online ISBN: 978-3-319-22816-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics