Skip to main content

Scale-up Problems for the Large Scale Production of Algae

  • Chapter
Algal Biorefinery: An Integrated Approach

Abstract

Microalgae are a natural source of high-value compounds for pharmaceutical and food industry and can also be a source of biofuels. Usually naturally occurring algae live completely submerged in aquatic environments, as low density cellular suspension. To have significant social, environmental and economic impact on human society, algae must be grown in large scale systems, in order to significantly increase the production volume. The objective of a process scale-up is to enlarge the production quantities with similar or higher productivity and product quality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abeliovich, A. and Shilo, M. (1972). Photooxidative death in blue-green algae. J. Bacteriol. 111(3), 682–689.

    CAS  Google Scholar 

  • Anning, T., Harris, G., & Geider, R. (2001). Thermal acclimation in the marine diatom Chaetoceros calcitrans (Bacillariophyceae). European Journal of Phycology, 36(3), 233–241.

    Article  Google Scholar 

  • Barbosa, M., Albrecht, M. and Wijffels, R. (2003). Hydrodynamic stress and lethal events in sparged microalgae culture. Biotechnol Bioeng, 25, 112–120.

    Article  Google Scholar 

  • Barbosa, M.J., Hadiyanto and Wijffels, R.H. (2004). Overcoming Shear Stress of Microalgae Cultures in Sparged Photobioreactors. Biotechnology and Bioengineering, 85(1), 78–85.

    Google Scholar 

  • Blaas, H. and Kroeze, C. (2014). Possible future effects of large-scale algae cultivation for biofuels on coastal eutrophication in Europe. Science of the Total Environment, 496, 45–53.

    Article  CAS  Google Scholar 

  • Camacho, F.G., Rodríguez, J.J., Mirón, A.S., Belarbi, E.H., Chisti, Y. and Grima, E.M. (2011). Photobioreactor scale-up for a shear-sensitive dinoflagellate microalga. Process Biochem., 46, 936–944.

    Article  CAS  Google Scholar 

  • Chopra, M. (2004). Scale-up in biochemical processes. PharmaChem, Biotechnology, January-February 2004, 48–53.

    Google Scholar 

  • Davison, I. R. (1991). Environmental effects on algal photosynthesis: temperature. Journal of phycology, 27(1), 2–8.

    Article  Google Scholar 

  • Emeka, U., Ndukwe, G.I., Mustapha, K.G. and Ayo, R.I. (2012). Constrains to large scale algal biomass production and utilization. J. Algal Biomass Utln., 3, 14–21.

    Google Scholar 

  • Enfors, S.-O., Jahic, M., Rozkov, A., Xu, B., Hecker, M., Jürgen, B., Kruger, E., Scheweder, T., Hamer, G., O’Beirne, D., Noisommit-Rizzi, N., Reuss, M., Boone, L., Hewitt, C., McFarlane, C., Nienow, A., Kovacs, T., Trägard, C., Fuchs, L., Revstedt, J., Friberg, P.C., Hjertager, B., Blomsten, G., Skogman, H., Hjort, S., Hoeks, F., Lin, H.-Y., Neubauer, P. van der Lans R., Luyben, K., Vrabel, P. and Manelius, A. (2001). Physiological responses to mixing in large scale bioreactors. J. Biotechnol., 85, 175–185.

    Google Scholar 

  • Falkowski PG and Raven J (1997) Aquatic Photosynthesis. Blackwell Science, Oxford

    Google Scholar 

  • Gallardo-Rodríguez, J.J., García-Camacho, F., Sánchez-Mirón, A., López-Rosales, L., Chisti, Y. and Molina-Grima, E. (2011). Shear-Induced Changes in Membrane Fluidity During Culture of a Fragile Dinoflagellate Microalga. Biotechnol. Prog., 28(2), 467–473.

    Article  Google Scholar 

  • Gouveia, L., Marques, A., Lopes da Silva, T. and Reis, A. (2009). Neochloris oleabundans UTEX # 1185: A suitable renewable lipid source for biofuel production. J. Ind. Microbiol. Biotechnol., 36, 821–826.

    Google Scholar 

  • Griffiths, M.J. (2013). Microalgal Cultivation Reactor Systems. In: Biotechnological Applications of Microalgae. Chapter 5, Faizal Bux (ed). CRC Press, pp. 51–76.

    Google Scholar 

  • Grobbelaar, J.U. (2009). From laboratory to commercial production: A case study of a Spirulina (Arthrospira) facility in Musina, South Africa. J. Appl. Phycol., 21, 523–527.

    Article  CAS  Google Scholar 

  • Gudin, C. and Chaumont, D. (1991). Cell Fragility - The Key Problem of Microalgae Mass Production in Closed Photobioreactors. Bioresour. Technol., 38, 145–151.

    Article  Google Scholar 

  • Harrison, W. G., & Platt, T. (1986). Photosynthesis-irradiance relationships in polar and temperate phytoplankton populations. Polar biology, 5(3), 153–164.

    Article  Google Scholar 

  • Hinze, J. O. (1955). Fundamentals of the hydrodynamic mechanism of splitting in dispersion processes. AIChE Journal, 1(3), 289–295.

    Article  CAS  Google Scholar 

  • Hsu, Y. and Wu, W. (2002). A novel approach for scaling-up a fermentation system. Biochem. Eng. J., 11, 123–130.

    Article  CAS  Google Scholar 

  • Hyka, P., Lickova, S., Tribyl, P., Melzoch, K. and Kpvar, K. (2012). Flow cytometry for the development of biotechnological processes with microalgae. Biotechnol Adv., 31, 2–16.

    Article  Google Scholar 

  • Jaouen, P., Vandanjon, L. and Quéméneur, F. (1999). The shear stress of microalgal cell suspensions (Tetraselmis suecica) in tangential flow filtration systems: The role of pumps. Bioresour. Technol., 68, 149–154.

    Article  CAS  Google Scholar 

  • Kolmogorov, A. N. (1949). On the disintegration of drops in a turbulent flow. In Dokl. Akad. Nauk SSSR (Vol. 66, No. 825–828, p. 30).

    Google Scholar 

  • Kossen, N.W.F. and Oosterhuis, N.M.G. (1992). Modelling and Scaling-up of Bioreactors. In: Rehm, H.-J. and Reed, G. (eds), Biotechnology. 1st ed., Vol. 2, pp 571–605.

    Google Scholar 

  • Li, X., Xu, H. and Wu, Q. (2007). Large-Scale Biodiesel Production from Microalga Chlorella protothecoides Through Heterotrophic Cultivation in Bioreactors. Biotechnology and Bioengineering, 98(4), 764–771.

    Article  CAS  Google Scholar 

  • Lopes da Silva, T., Santos, C. and Reis, A. (2009a). Multi-parameter flow cytometry as a tool to monitor heterotrophic microalgal batch fermentations for oil production towards biodiesel. Biotechnol. Bioproc. Eng., 14, 330–337.

    Google Scholar 

  • Lopes da Silva, T., Reis, A., Medeiros, R., Oliveira, C. and Gouveia, L. (2009b). Oil production towards biofuel from autotrophic microalgae semi-continuous cultivations by flow cytometry. Appl. Biochem. Biotechnol., 159, 568–578.

    Article  CAS  Google Scholar 

  • Mirón, A.S., Gómez, A.C., Camacho, F.G., Grima, E.M. and Chisti, Y. (1999). Comparative evaluation of compact photobioreactors for large-scale monoculture of microalgae. J Biotechnol., 70, 249–270.

    Article  Google Scholar 

  • Molina Grima, E. (1999). Photobioreactors: Light regime, mass transfer, and scale-up. Journal of Biotechnology, 70, 231–247.

    Article  CAS  Google Scholar 

  • Molina, E., Fernández, J. Acién, F.G. and Chisti, Y. (2001). Tubular photobioreactor design for algal cultures. Journal of Biotechnology, 92, 113–131.

    Article  CAS  Google Scholar 

  • Oncel, S. and Sabankay, M. (2012). Microalgal biohydrogen production considering light energy and mixing time as the two key features for scale-up. Bioresource Technology, 121, 228–234.

    Article  CAS  Google Scholar 

  • Passell, H., Dhaliwal, H., Reno, M., Wu, B., Ben Amotz, A., Ivry, E., Gay, M., Czartoski, T., Laurin, L. and Ayer, N. (2013). Algae biodiesel life cycle assessment using current commercial data. Journal of Environmental Management, 129, 103–111.

    Article  CAS  Google Scholar 

  • Pate, R., Klise, G. and Wub, B. (2011). Resource demand implications for US algae biofuels production scale-up. Applied Energy, 88, 3377–3388.

    Article  CAS  Google Scholar 

  • Qu, L., Ren, L.-J. and Huang, H. (2013). Scale-up of docosahexaenoic acid production in fed-batch fermentation by Schizochytrium sp. based on volumetric oxygen-transfer coefficient. Biochemical Engineering Journal, 77, 82–87.

    Article  CAS  Google Scholar 

  • Ramírez-Duque, J.L., Marín-Quintero, D.A. and García-Pulido, C.H. (2012). Evaluation of Microalgal Mortality in a Centrifugal Pump of a Tubular Photobioreactor. Ing. Univ. SciELO. (Colombia), 16(2), 333–347.

    Google Scholar 

  • Rawat, I., Ranjith Kumar, R., Mutanda, T.F. and Bux, F. (2013). Biodiesel from microalgae: A critical evaluation from laboratory to large scale production. Applied Energy, 103, 444–467.

    Article  CAS  Google Scholar 

  • Ren, J., Han, P., Wei, H. and Jia, L. (2014). Fouling-resistant behavior of silver nanoparticle-modified surfaces against the bioadhesion of microalgae. ACS Appl Mater Interfaces, 6(6), 3829–3838.

    Article  CAS  Google Scholar 

  • Richmond, A. (1986). Outdoor mass cultures of microalgae. In: A. Richmond (ed.), Handbook of Microalgal Mass Culture. CRC Press. Boca Raton, pp. 285–330.

    Google Scholar 

  • Rodríguez, J.J., Mirón, A.S.A., Camacho, F., Garcia, M. and Belarbi, E. (2009). Causes of Shear Sensitivity of the Toxic Dinoflagellate Protoceratium reticulatum. Biotechnol. Prog., 25, 792–800.

    Article  Google Scholar 

  • Salleh, S., McMinn, A., Mohammad, M., Yasin, Z. and Tan, S.H.A. (2010). Effects of Temperature on the Photosynthetic Parameters of Antarctic Benthic Microalgal Community. ASM Sci. J., 4(1), 81–88.

    Google Scholar 

  • Shuler, F.L. and Kargi, F. (1992). Bioprocess Engineering: Basic concepts. 2nd ed, Prentice-Hall, Englewood Cliffs, NJ.

    Google Scholar 

  • Soeder, C.J. (1980). Massive cultivation of microalgae: Results and prospects. Hydrobiologia, 72, 197–209.

    Article  CAS  Google Scholar 

  • Tabernero, A., Martín del Valle, E.M. and Galán, M.A. (2012). Evaluating the industrial potential of biodiesel from a microalgae heterotrophic culture: Scale-up and economics. Biochemical Engineering Journal, 63, 104–115.

    Article  CAS  Google Scholar 

  • Taylor, B., Xiao, N., Sikorski, Yong, M., Harris, T., Helme, T., Smallbone, A., Bhave, A. and Kraft, M. (2013). Techno-economic assessment of carbon-negative algal biodiesel for transport solutions. Applied Energy, 106, 262–274.

    Google Scholar 

  • Thiry, M. and Cingolani, D. (2002). Optimizing scale-up fermentation processes. Trends in Biotechnology, 20(3), 33–35.

    Article  Google Scholar 

  • Tredici, M.R. (1999). Bioreactors, Photo. In: Flickinger, M.C. and Drew, S.W. (eds), Encyclopedia of Bioprocess Technology: Fermentation, biocatalysis, and bioseparation. ISBN 0-471-13822-3. John Wiley & Sons, Inc. pp. 364–419.

    Google Scholar 

  • Wang, S-K., Hua, Y-R., Wang, F., Stiles, A.R. and Liu, C.-Z. (2014). Scale-up cultivation of Chlorella ellipsoidea from indoor to outdoor in bubble column bioreactors. Bioresource Technology, 156, 117–122.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

FCT supported SIMBIOALGA project (PTDC/AAC-AMB/112954/2009) FCOMP-01-0124-FEDER-013935 (also supported by FEDER funding through COMPETE- Programa Operacional Factores de Competitividade).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto Reis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Capital Publishing Company

About this chapter

Cite this chapter

da Silva, T.L., Reis, A. (2015). Scale-up Problems for the Large Scale Production of Algae. In: Das, D. (eds) Algal Biorefinery: An Integrated Approach. Springer, Cham. https://doi.org/10.1007/978-3-319-22813-6_6

Download citation

Publish with us

Policies and ethics