Skip to main content

Growth Characteristics of Different Algal Species

  • Chapter
  • 1927 Accesses

Abstract

Algae are large and diverse group of simple, typically autotrophic organisms, ranging from unicellular to multi-cellular forms (Singh J, Gu S, Renew Sustain Energy Rev 14:2596–2610, 2010). Productivity of these photosynthetic microorganisms which converts CO2 into carbon-rich lipids is only a step or two away from biofuel which in turn is produced by several chemical, biochemical and thermochemical processes (Wijffels RH, Barbosa MJ, Science 329:796–799, 2010; Kirrolia A et al., Renew Sustain Energy Rev 20:642–656, 2013; Beneroso D et al., Bioresour Technol 144:240–246, 2013). Globally algal biofuel has been considered as 3rd and 4th generation biofuel based on its potential over 1st and 2nd generation crop based biofuels. Numerous scientists have discovered various applications of algal biomass apart from biofuel applications for the production of value added products to reduce its production cost towards bio-refinery approach (Rawat I et al., Appl Energy 103:444–467, 2013). Wijffels and Barbosa (Science 329:796–799, 2010) reported in Science about the broad prospect of microalgae over terrestrial crop based biofuel. In their report they mentioned how a 50-year-old concept came into focus during the oil crisis of 1970s. Since then over millions of algal species have been isolated, identified and studied towards its potential for biofuel and value added products. Table 3.1 represents microscopic view of some potential algal strains which has been studied as model organism at lab-scale and pilot-scale. Recent studies suggest that green algae are promising species bearing a substantial potential to obtain various products in a biorefinery concept (Suali E, Sarbatly R, Sustain Energy Rev 16:4316–4342, 2012). The algal oil can be transesterified to fatty acid methyl ester (FAME) and non-lipid components of algal biomass such as carbohydrates and proteins can be used for the production of bioethanol, biobutanol, neutraceuticals and animal feed (Kirrolia A et al., Renew Sustain Energy Rev 20:642–656, 2013). Moreover, the residue biomass cake can be used further to produce liquid fuel using the process of pyrolysis (Beneroso D et al., Bioresour Technol 144:240–246, 2013).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abou-Shanab, R.A.I., Hwang, J.-H., Cho, Y., Min, B. and Jeon, B.-H. (2011). Characterization of microalgal species isolated from fresh water bodies as a potential source for biodiesel production. Appl. Energy, 88, 3300–3306.

    Article  CAS  Google Scholar 

  • Acién, F.G., Fernández, J.M., Magán, J.J. and Molina, E. (2012). Production cost of a real microalgae production plant and strategies to reduce it. Biotechnol. Adv., 30, 1344–1353.

    Article  Google Scholar 

  • Ashokkumar, V., Rengasamy, R., Deepalakshmi, S., Sivalingam, A. and Sivakumar, P. (2014). Mass cultivation of microalgae and extraction of total hydrocarbons: A kinetic and thermodynamic study. Fuel, 119, 308–312.

    Article  CAS  Google Scholar 

  • Basu, S., Roy, A.S., Mohanty, K. and Ghoshal, A.K. (2014). CO2 biofixation and carbonic anhydrase activity in Scenedesmus obliquus SA1 cultivated in large scale open system. Bioresour. Technol., 164, 323–330.

    Article  CAS  Google Scholar 

  • Bellou, S. and Aggelis, G. (2012). Biochemical activities in Chlorella sp. and Nannochloropsis salina during lipid and sugar synthesis in a lab-scale open pond simulating reactor. J. Biotechnol., 164, 318–329.

    Article  CAS  Google Scholar 

  • Beneroso, D., Bermúdez, J.M., Arenillas and Menéndez, J. (2013). Microwave pyrolysis of microalgae for high syngas production. Bioresour. Technol., 144, 240–246.

    Google Scholar 

  • Bhola, V., Desikan, R., Santosh, S.K., Subburamu, K., Sanniyasi, E. and Bux, F. (2011). Effects of parameters affecting biomass yield and thermal behavior of Chlorella vulgaris. J. Biosci. Bioeng., 111, 377–382.

    Article  CAS  Google Scholar 

  • Cai, T., Park, S.Y. and Li, Y. (2013). Nutrient recovery from wastewater streams by microalgae: Status and prospects. Renew. Sustain. Energy Rev., 19, 360–369.

    Article  CAS  Google Scholar 

  • Cakmak, Z.E., Olmez, T.T., Cakmak, T., Menemen, Y. and Tekinay, T. (2014). Induction of triacylglycerol production in Chlamydomonas reinhardtii: Comparative analysis of different element regimes. Bioresour. Technol., 155, 379–387.

    Article  CAS  Google Scholar 

  • Chaichalerm, S., Pokethitiyook, P., Yuan, W., Meetam, M., Sritong, K., Pugkaew, W., Kungvansaichol, K., Kruatrachue, M. and Damrongphol, P. (2012). Culture of microalgal strains isolated from natural habitats in Thailand in various enriched media. Appl. Energy, 89, 296–302.

    Article  CAS  Google Scholar 

  • Chinnasamy, S., Bhatnagar, A., Hunt, R.W. and Das, K.C. (2010). Microalgae cultivation in a wastewater dominated by carpet mill effluents for biofuel applications. Bioresour. Technol., 101, 3097–3105.

    Article  CAS  Google Scholar 

  • Chisti, Y. (2007). Biodiesel from microalgae. Biotechnol. Adv., 25, 294–306.

    Article  CAS  Google Scholar 

  • Cho, S., Lee, N., Park, S., Yu, J., Luong, T.T., Oh, Y.-K. and Lee, T. (2013). Microalgae cultivation for bioenergy production using wastewaters from a municipal WWTP as nutritional sources. Bioresour. Technol., 131, 515–520.

    Article  CAS  Google Scholar 

  • Bhowmick, G., Subramanian, G., Mishra, S. and Sen, R. (2014). Raceway pond cultivation of a marine microalga of Indian origin for biomass and lipid production: A case study. Algal Res. DOI: 10.1016/j.algal.2014.07.005.

  • Doucha, J. and Lívanský, K. (2009). Outdoor open thin-layer microalgal photobioreactor: Potential productivity. J. Appl. Phycol., 21, 111–117.

    Article  CAS  Google Scholar 

  • Farooq, W., Lee, Y.-C., Ryu, B.-G., Kim, B.-H., Kim, H.-S., Choi, Y.-E. and Yang, J.-W. (2013). Two-stage cultivation of two Chlorella sp. strains by simultaneous treatment of brewery wastewater and maximizing lipid productivity. Bioresour. Technol., 132, 230–238.

    Article  CAS  Google Scholar 

  • Feng, P., Deng, Z., Hu, Z. and Fan, L. (2011). Lipid accumulation and growth of Chlorella zofingiensis in flat plate photobioreactors outdoors. Bioresour. Technol., 102, 10577–10584.

    Article  CAS  Google Scholar 

  • Ge, Y., Liu, J. and Tian, G. (2011). Growth characteristics of Botryococcus braunii 765 under high CO2 concentration in photobioreactor. Bioresour. Technol., 102, 130–134.

    Article  CAS  Google Scholar 

  • He, P.J., Mao, B., Lü, F., Shao, L.M., Lee, D.J. and Chang, J.S. (2013). The combined effect of bacteria and Chlorella vulgaris on the treatment of municipal wastewaters. Bioresour. Technol., 146, 562–568.

    Article  CAS  Google Scholar 

  • Hodaifa, G., Sánchez, S., Martínez, M.E. and Órpez, R. (2013). Biomass production of Scenedesmus obliquus from mixtures of urban and olive-oil mill wastewaters used as culture medium. Appl. Energy, 104, 345–352.

    Article  CAS  Google Scholar 

  • Huber, G.W., Iborra, S. and Corma, A. (2006). Synthesis of transportation fuels from biomass: Chemistry, catalysts, and engineering. Chem Rev, 106, 4044–4098.

    Article  CAS  Google Scholar 

  • Jiménez, C., Cossío, B.R. and Niell, F.X. (2003). Relationship between physicochemical variables and productivity in open ponds for the production of Spirulina: A predictive model of algal yield, Aquaculture, 221, 331–345.

    Article  Google Scholar 

  • Kirrolia, A., Bishnoi, N.R. and Singh, R. (2013). Microalgae as a boon for sustainable energy production and its future research and development aspects. Renew. Sustain. Energy Rev. , 20, 642–656.

    Article  CAS  Google Scholar 

  • Kong, Q-X., Li, L., Martinez, B., Chen, P. and Ruan, R. (2010). Culture of microalgae Chlamydomonas reinhardtii in wastewater for biomass feedstock production. Appl Biochem Biotechnol., 160, 9–18.

    Article  CAS  Google Scholar 

  • Kumar, K., Dasgupta, C.N. and Das, D. (2014). Cell growth kinetics of Chlorella sorokiniana and nutritional values of its biomass. Bioresour. Technol. , 167, 358–366.

    Article  CAS  Google Scholar 

  • Li, Y., Chen, Y.-F., Chen, P., Min, M., Zhou, W., Martinez, B., Zhu, J. and Ruan, R. (2011). Characterization of a microalga Chlorella sp. well adapted to highly concentrated municipal wastewater for nutrient removal and biodiesel production. Bioresour. Technol., 102, 5138–5144.

    Article  CAS  Google Scholar 

  • Michels, M.H.A., Slegers, P.M., Vermuë, M.H. and Wijffels, R.H.(2014). Effect of biomass concentration on the productivity of Tetraselmis suecica in a pilot-scale tubular photobioreactor using natural sunlight. Algal Res., 4, 12–18.

    Article  Google Scholar 

  • Mitra, D., van Leeuwen, J. (Hans) and Lamsal, B. (2012). Heterotrophic/mixotrophic cultivation of oleaginous Chlorella vulgaris on industrial co-products. Algal Res., 1, 40–48.

    Google Scholar 

  • Moreno, J., Vargas, M.A., Rodrı’guez, H., Rivas, J. and Guerrero, M.G. (2003). Outdoor cultivation of a nitrogen-fixing marine cyanobacterium, Anabaena sp. ATCC 33047. Biomol. Eng., 20, 191–198.

    Article  CAS  Google Scholar 

  • Norton, T.A., Melkonian, M. and Anderson, R.A. (1996). Algal biodiversity. Phycologia, 35, 308–326.

    Article  Google Scholar 

  • Nurra, C., Torras, C., Clavero, E., Ríos, S., Rey, M., Lorente, E., Farriol, X. and Salvadó, J. (2014). Biorefinery concept in a microalgae pilot plant: Culturing, dynamic filtration and steam explosion fractionation. Bioresour. Technol., 163, 136–142.

    Article  CAS  Google Scholar 

  • Putt, R., Singh, M., Chinnasamy, S. and Das, K.C. (2011). An efficient system for carbonation of high-rate algae pond water to enhance CO2 mass transfer. Bioresour Technol., 102(3), 3240–3245.

    Article  CAS  Google Scholar 

  • Rao, R., Ravishankar, G. and Sarada, R. (2012). Cultivation of green alga Botryococcus braunii in raceway, circular ponds under outdoor conditions and its growth, hydrocarbon production. Bioresour. Technol., 123, 528–533.

    Article  Google Scholar 

  • Rawat, I., Ranjith Kumar, R., Mutanda, T. and Bux, F. (2013). Biodiesel from microalgae: A critical evaluation from laboratory to large scale production. Appl. Energy, 103, 444–467.

    Article  CAS  Google Scholar 

  • Rodolfi, L., Chini Zittelli, G., Bassi, N., Padovani, G., Biondi, N., Bonini, G. and Tredici, M.R. (2009). Microalgae for oil: Strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnol. Bioeng., 102, 100–112.

    Article  CAS  Google Scholar 

  • Roleda, M.Y., Slocombe, S.P., Leakey, R.J.G., Day, J.G., Bell, E.M. and Stanley, M.S. (2013). Effects of temperature and nutrient regimes on biomass and lipid production by six oleaginous microalgae in batch culture employing a two-phase cultivation strategy. Bioresour. Technol., 129, 439–449.

    Article  CAS  Google Scholar 

  • Singh, J. and Gu, S. (2010). Commercialization potential of microalgae for biofuels production. Renew. Sustain. Energy Rev., 14, 2596–2610.

    Article  CAS  Google Scholar 

  • Suali, E. and Sarbatly, R. (2012). Conversion of microalgae to biofuel. Renew. Sustain. Energy Rev., 16, 4316–4342.

    Article  CAS  Google Scholar 

  • Sydney, E.B., da Silva, T.E., Tokarski, A., Novak, A.C., de Carvalho, J.C., Woiciecohwski, A.L., Larroche, C. and Soccol, C.R. (2011). Screening of microalgae with potential for biodiesel production and nutrient removal from treated domestic sewage. Appl. Energy, 88, 3291–3294.

    Article  CAS  Google Scholar 

  • Wang, B., Lan, C.Q. and Horsman, M. (2012). Closed photobioreactors for production of microalgal biomasses. Biotechnol. Adv., 30, 904–912.

    Article  CAS  Google Scholar 

  • Wang, L., Li, Y., Chen, P., Min, M., Chen, Y., Zhu, J. and Ruan, R.R. (2010). Anaerobic digested dairy manure as a nutrient supplement for cultivation of oil-rich green microalgae Chlorella sp. Bioresour. Technol., 101, 2623–2628.

    Article  CAS  Google Scholar 

  • Wijffels, R.H. and Barbosa, M.J. (2010). An outlook on microalgal biofuels. Science, 329, 796–799.

    Article  CAS  Google Scholar 

  • Wu, L.F., Chen, P.C., Huang, A.P. and Lee, C.M. (2012). The feasibility of biodiesel production by microalgae using industrial wastewater. Bioresour. Technol., 113, 14–18.

    Article  CAS  Google Scholar 

  • Xu, Y. and Boeing, W.J. (2014). Modeling maximum lipid productivity of microalgae: Review and next step. Renew. Sustain. Energy Rev., 32, 29–39.

    Article  CAS  Google Scholar 

  • Yang, J., Li, X., Hu, H., Zhang, X., Yu, Y. and Chen, Y. (2011). Growth and lipid accumulation properties of a freshwater microalga, Chlorella ellipsoidea YJ1, in domestic secondary effluents. Appl. Energy, 88, 3295–3299.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaustubha Mohanty .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Capital Publishing Company

About this chapter

Cite this chapter

Mishra, S., Mohanty, K. (2015). Growth Characteristics of Different Algal Species. In: Das, D. (eds) Algal Biorefinery: An Integrated Approach. Springer, Cham. https://doi.org/10.1007/978-3-319-22813-6_3

Download citation

Publish with us

Policies and ethics