Skip to main content

Significance of Cyanobacteria as Inoculants in Agriculture

  • Chapter

Abstract

The utilization of beneficial microbes as biofertilizers has become vital in agriculture sector for their prospective role in food safety and sustainable crop production. Biofertilizers keep the soil environment rich in all kinds of micro- and macro-nutrients via nitrogen fixation, phosphate and potassium solubilisation or mineralization, release of plant growth regulating substances, production of antibiotics and biodegradation of organic matter in the soil (Sinha et al, Int J Agric Health Saf 1:50–64, 2014). When biofertilizers are applied as seed or soil inoculants, they multiply and participate in nutrient cycling and benefit crop productivity (Singh et al, Agric Ecosyst Environ 140:339–353, 2011). Generally, 60 % to 90 % of the total applied fertilizer is lost and the remaining 10 % to 40 % is taken up by the plants. In this regard, microbial inoculants have supreme significance in integrated nutrient management systems to sustain agricultural productivity and healthy environment (Adesemoye and Kloepper Appl Microbiol Biotechnol 85:1–12, 2009).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adesemoye, A.O. and Kloepper, J.W. (2009). Plant-microbes interactions in enhanced fertilizer-use efficiency. Appl Microbiol Biotechnol, 85, 1–12.

    Google Scholar 

  • Ahmed, S.U. (2001). Studies on application of some potential cyanobacteria strains in rice cultivation under unsterilized soil condition in pot culture. Phykos, 40, 149–153.

    Google Scholar 

  • Aiyer, R.S., Salahudeen, S. and Venkataraman, G.S. (1972). Long-term algalization field trial with high yielding varieties of rice (Oryza sativa L.). Ind. J. Agr. Sci., 42, 380–383.

    Google Scholar 

  • Alahari, A. and Apte, S.K. (1998). Pleiotropic effects of potassium deficiency in a heterocystous, nitrogen fixing cyanobacterium Anabaena torulosa. Microbiology, 144, 1557–1563.

    Article  CAS  Google Scholar 

  • Allison, F. E., & Hoover, S. R. (1935). Conditions which favour nitrogen fixation by a blue-green alga. Trans. 3rd Inter. Cong. Soil Sci, 1, 145–147.

    Google Scholar 

  • Antarikanonda, P. and Lorenzen, H. (1982). N2-fixing blue-green algae (Cyanobacteria) of high efficiency from paddy soils of Bangkok, Thailand: Characterization of species and N2-fixing capacity in the laboratory. Arch. Hydrobiol. Suppl., 63, 53–70.

    Google Scholar 

  • Antarikanonda, P. and Amarit, P. (1991). Influence of blue-green algae and nitrogen fertilizer on rice yield in saline soils. Kasctsart Journal of Natural Sciences, 25, 18–25.

    Google Scholar 

  • Apte, S.K. and Haselkorn, R. (1990). Cloning of salinity stress-induced genes from the salt tolerant nitrogen-fixing cyanobacterium Anabaena torulosa. Plant Mol Biol, 15, 723–733.

    Article  CAS  Google Scholar 

  • Apte, S.K. and Thomas, J. (1984). Effect of sodium on nitrogen fixation in Anabaena torulosa and Plectonema boryanum. J Gen Microbiol., 130, 1161–1168.

    CAS  Google Scholar 

  • Apte, S.K. and Thomas, J. (1985). Effect of sodium on membrane potential, uptake of phosphate, nucleoside phosphate pool and synthesis of expression of nitrogenase in Anabaena torulosa. Indian J Exp Biol., 23, 518–522.

    CAS  Google Scholar 

  • Apte, S.K. and Thomas, J. (1983). Impairment of photosynthesis by sodium deficiency and its relationship to nitrogen fixation in the cyanobacterium Anabaena torulosa. FEMS Microbiol Lett, 16, 153–157.

    Google Scholar 

  • Apte, S.K., Fernandes, T., Badran, H. and Ballal, A. (1998). Expression and possible role of stress-responsive proteins in Anabaena. J Biosci., 23, 399–406.

    Article  CAS  Google Scholar 

  • Apte, S.K., Reddy, B.R. and Thomas, J. (1987). Relationship between sodium influx and salt tolerance of nitrogen fixing cyanobacteria. Appl Environ Microbiol., 53, 1934–1939.

    CAS  Google Scholar 

  • Arora, J.K., Garcha, H.S., Pandher, M.S. and Gupta, R.P. (1989). Evaluation of the most prevalent cyanobacteria for N2-fixing capacity and thermo-tolerance in Punjab. Ann. Biol., 5, 77–80.

    Google Scholar 

  • Ayers, A. D., & Edwards, M. R. (2013). U.S. Patent Application 14/069,932.

    Google Scholar 

  • Bailey, D., Mazurak, A. P., & Rosowski, J. R. (1973). AGGREGATION OF SOIL PARTICLES BY ALGAE1. Journal of Phycology, 9(1), 99–101.

    Article  Google Scholar 

  • Ballal, A. and Apte, S.K. (2005). Differential expression of the two kdp operons in the nitrogen-fixing cyanobacterium Anabaena sp. strain L-31. Applied and Environmental Microbiology, 71(9), 5297–5303.

    Article  CAS  Google Scholar 

  • Bhagwat, A.A. and Apte, S.K. (1989). Comparative analysis of proteins induced by heat shock, salinity, and osmotic stress in the nitrogen-fixing cyanobacterium Anabaena sp. strain L-31. J Bacteriol, 171, 5187–5189.

    CAS  Google Scholar 

  • Blevins, D. G., & Lukaszewski, K. M. (1998). Boron in plant structure and function. Annual review of plant biology, 49(1), 481–500.

    Article  CAS  Google Scholar 

  • Bristol, B. M., & Page, H. J. (1923). A critical enquiry into the alleged fixation of nitrogen by green algae1. Annals of Applied Biology, 10(3–4), 378–408.

    Article  CAS  Google Scholar 

  • Burns, R. G., & Davies, J. A. (1986). The microbiology of soil structure. Biological Agriculture & Horticulture, 3(2–3), 95–113.

    Google Scholar 

  • Caire, G.Z., Cano, M.S., Mule, M.C.Z. and Halperin, D.R. (1990). Antimycotic products from the cyanobacterium Nostoc muscorum against Rhizoctonia solani. Phytopathology, 51, 1–4.

    Google Scholar 

  • Carlson, C. L., & Adriano, D. C. (1993). Environmental impacts of coal combustion residues. Journal of Environmental quality, 22(2), 227–247.

    Article  CAS  Google Scholar 

  • Cassman, K.G. and Pingali, P.L. (1994). Extrapolating trends from long-term experiments to farmers fields: The case of irrigated rice systems in Asia. In: Agricultural sustainability in economic environmental and statistical considerations. Barnett, V., Payne, R. and Steiner, R. (Eds) Wiley, New York. pp. 63–84.

    Google Scholar 

  • Chaturvedi, M. L., & Agarwal, R. A. (1983). Ammonia excretion in snails Viviparus bengalensis (LAMARCK) and Pila globosa (SWAINSON) during active and dormant periods. Internationale Revue der gesamten Hydrobiologie und Hydrographie, 68(4), 599–602.

    Article  Google Scholar 

  • Chaudhary, V., Prasanna, R., Nain, L., Dubey, S.C., Gupta, V., Singh, R., Jaggi, S. and Bhatnagar, A.K. (2012). Bioefficacy of novel cyanobacteria-amended formulations in suppressing damping off disease in tomato seedlings. World Journal of Microbiology and Biotechnology, 28, 3301–3310.

    Article  Google Scholar 

  • Cheshire, M.V., Sparling, G.P. and Mundie, C.M., 1983. Effect of periodate treatment of soil on carbohydrate constituents and soil aggregation. J. Soil Sci., 34:105–112.

    Article  CAS  Google Scholar 

  • Cheshire, M.V., Sparling, G.P. and Mundie, C.M., 1984. Influence of soil type, crop and air drying on residual carbohydrate content and aggregate stability after treatment with periodate and tetraborate. Plant Soil, 76: 339–347.

    Article  CAS  Google Scholar 

  • Chopra, T.S. and Dube, J.N. (1971). Changes of nitrogen content of rice soil inoculated with Tolypothrix tenuis. Plant Soil, 35, 453–462.

    Article  Google Scholar 

  • David, K.A.V. and Thomas, J. (1979). Extracellular peptides of Anabaena L-31: Evidence of their role in regulation of heterocyst formation . J Biosci, 1, 447–445.

    Article  CAS  Google Scholar 

  • De Datta, S.K. (1987). Nitrogen transformation processes in relation to improved cultural practices for lowland rice. Plant Soil, 100, 47–69.

    Article  Google Scholar 

  • De, P.K. (1936). The problem of the nitrogen supply of rice. I. Fixation of nitrogen in the rice soil under waterlogged condition. Indian J. Agric. Sci., 6, 1237–1242.

    Google Scholar 

  • De, P.K. (1939). The role of blue-green algae in nitrogen fixation in rice fields. Proc. Roy. Soc. London, 127B, 129–139.

    Google Scholar 

  • De, P.K. and Mandal, L.N. (1956). Fixation of nitrogen by algae in rice soils. Soil Sci., 81, 453–458.

    Article  CAS  Google Scholar 

  • De, P.K. and Sulaiman, M. (1950). The influence of algal growth in the yield of crops. Ind. J. Agric. Sci., 20, 327–342.

    Google Scholar 

  • Dhaliwal, M.K., Pandher, M.S., Gupta, R.P., Garcha, H.S. and Gagneja, M.R. (1995). Effect of chemical nitrogen on the growth and nitrogen fixation by blue-green algae in Basmati rice. Indian J. Ecol., 22(1), 7–10.

    Google Scholar 

  • Dhar, D.W., Prasanna, R. and Singh, B.V. (2007). Comparative performance of three carrier based blue green algal biofertilizers for sustainable rice cultivation. J. Sust .Agric, 30(2), 41–50.

    Google Scholar 

  • Dommergues, Y. R. and Rinaudo, G. (1979). Factors affecting N2 fixation in the rice rhizosphere. In: Nitrogen and Rice Philippines, IRRI. pp. 241–260.

    Google Scholar 

  • Dwivedi, S., Tripathi, R.D., Srivastava, S., Mishra, S., Shukla, M.K.,Tiwari, K.K., Singh, R. and Rai, U.N. (2007). Growth performance and biochemical responses of three rice (Oryza sativa L.) cultivars grown in fly-ash amended soil. Chemosphere, 67, 140–151.

    Article  CAS  Google Scholar 

  • El-Nawawy, A.S. and Hamdi, Y.A. (1975). Research on blue-green algae in Egypt, 1958–1972. In: Nitrogen fixation by free living microorganisms. Stewart, W.D.P. (ed.). Cambridge Univ. Press, London. pp. 219–228.

    Google Scholar 

  • Fenchel, T., & Blackburn, T. H. (1979). Bacteria and mineral cycling. Academic Press, Inc.(London) Ltd.

    Google Scholar 

  • Fernandes, T.A., Iyer, V. and Apte , S.K. (1993). Differential effects of salt and osmotic stress on growth and nitrogen fixation in Anabaena sp. strain L-31. Appl Environ Microbiol, 59, 899–904.

    Google Scholar 

  • Fernandez Valiente, E., Ucha, A., Quesada, A., Leganes, F. and Carreres, R. (2000). Contribution of N2 fixing cyanobacteria to rice production: Availability of nitrogen from 15 N-labelled cyanobacteria and ammonium sulphate to rice. Plant Soil, 221, 107–112.

    Article  Google Scholar 

  • Fogg, G.E., Stewart, W.D.P., Fay, P. and Walsby, A.E. (1973). The blue-green algae. Academic Press, London.

    Google Scholar 

  • Fujishige, N.A., Kapadia, N.N., DeHoff, P.L., Hirsch, A.M. (2006). Investigations of Rhizobium biofilm formation. FEMS Microbiol. Ecol., 56, 195–206.

    Article  CAS  Google Scholar 

  • Ganf, G. G., & Blazka, P. (1974). Oxygen uptake, ammonia and phosphate excretion by zooplankton of a shallow equatorial lake (Lake George, Uganda).Limnol. Oceanogr, 19(2), 313–325.

    Article  CAS  Google Scholar 

  • Gardner, W. S., & Miller III, W. H. (1981). Intracellular composition and net release rates of free amino acids in Daphnia magna. Canadian Journal of Fisheries and Aquatic Sciences, 38(2), 157–162.

    Article  CAS  Google Scholar 

  • Ghosh, T.K. and Saha, K.C. (1993). Effects of inoculation with N2-fixing cyanobacteria on the nitrogenase activity in soil and rhizosphere wetland rice (Oryza sativa L.). Biol. Fertil. Soils, 16, 16–20.

    CAS  Google Scholar 

  • Ghosh, T.K. and Saha, K.C. (1997). Effects of inoculation of cyanobacteria on nitrogen status and nutrition of rice (Oryza sativa L.) in an Entisol amended with chemical and organic sources of nitrogen. Biol. Fertil. Soils, 24, 123–128.

    CAS  Google Scholar 

  • Glick, B.R., Patten, C.L., Holguim, G. and Penrose, D.M. (1999). Biochemical and Genetic Mechanisms used by Plant Growth Promoting Bacteria. Imperial College Press, London. pp. 180–248.

    Book  Google Scholar 

  • Glick, B.R. (1995). The enhancement of plant growth of free living bacteria. Can. J. Microbiol, 41, 109–117.

    Article  CAS  Google Scholar 

  • Goyal, S.K., Singh, B.V., Nagpal, V. and Marwaha, T.S. (1997). An improved method for production of algal biofertilizer. Indian Agric. Sci. 67, 314–315.

    Google Scholar 

  • Goyal, S.K. (1982). Blue-green algae and rice cultivation. Proc. Natl. Symp., BNF, IARI, New Delhi. p. 346–347.

    Google Scholar 

  • Goyal, S.K. (1989). Stress compatibility in cyanobacteria. Phykos, 28, 267–273.

    Google Scholar 

  • Goyal, S.K. (1997). Algae and the soil environment. Phykos, 36, 1–12.

    CAS  Google Scholar 

  • Grant, I.F. and Seegers, R. (1985). Tubificid role in soil mineralization and recovery of algal nitrogen by low land rice. Soil Biol. Biochem., 17, 559–563.

    Article  Google Scholar 

  • Grant, I.F., Tiroi, A.C., Aziz, T. and Watanabe, I. (1983). Regulation of invertebrate grazers as a means to enhance biomass and nitrogen fixation of Cyanophycep in wetland rice fields. Soil Science Society of America Journal, 47, 669–675.

    Article  Google Scholar 

  • Grant, I.F., Roger, P.A. and Watanabe, I. (1985). Effects of grazer regulation and algal inoculation on photodependent nitrogen fixation in a wetland rice field. Biol. Fert. Soils, 1, 61–72.

    Article  CAS  Google Scholar 

  • Grzesik, M. and Romanowska-Duda, Z. (2014). Improvements in germination, growth and metabolic activity of corn seedlings by grain conditioning and root application with cyanobacteria and microalgae. Pol J Environ Stud, 23, 1147–1153.

    Google Scholar 

  • Gunnison, D. and Alexander, M. (1975). Resistance and susceptibility of algae to decomposition by natural microbial communities. Limnol. Oceanogr., 20, 64–70.

    Article  Google Scholar 

  • Gupta, D.K., Rai, U.N., Tripathi, R.D. and Inouhe, M. (2002). Impacts of flyash on soil and plant responses. J. Plant Res, 115, 401–409.

    Article  CAS  Google Scholar 

  • Gupta, R.D. and Khajuria, M.R. (1996). Prospects and constraints of biofertilizers for rice with special reference to Jammu region of Jammu and Kashmir State. Farmers and Parliament, 31, 21–22.

    Google Scholar 

  • Harrison, W.H. and Aiyer, S. (1914). Mem. Dep. Agric. India Chem., 4, 1.

    Google Scholar 

  • Hegde, D.M. and Dwivedi, B.S. (1993). Integrated nutrient supply and management as a strategy to meet nutrient demand. Fert. News, 38, 49–59.

    Google Scholar 

  • Herbette, S., Taconnat, L., Hugouvieux, V., Piette, L., Magniette, M. L., Cuine, S., … & Leonhardt, N. (2006). Genome-wide transcriptome profiling of the early cadmium response of Arabidopsis roots and shoots. Biochimie, 88(11), 1751–1765.

    Google Scholar 

  • Hoare, D.S., Hoare, S.L. and Moore, R.B. (1967). The photoassimilation of organic compounds by autotrophic blue-green algae. J. Gen. Microbiol., 49, 351–370.

    Article  CAS  Google Scholar 

  • Inubushi, K. and Watanabe, I. (1986). Dynamics of available N in paddy soils. II. Mineralized N of chloroform-fumigated soil as a nutrient source for rice. Soil Sci. Plant Nutr., 32, 561–577.

    Google Scholar 

  • Inubushi, K., Hori, K., Matsumoto, S. and Wada, H. (1997a). Anaerobic decomposition of organic carbon in paddy soil in relation to methane emission to the atmosphere. Water Sci. Technol., 36, 523–530.

    Article  CAS  Google Scholar 

  • Inubushi, K., Shibahara, F., Hasegawa, K. and Yamamura, S. (1997b). Effect of added organic matter on microbial biomass nitrogen dynamics and plant uptake in paddy soils. In: Plant nutrition for sustainable food production and environment. Ando et al. (eds). Kluwer Academic Publishers. Dordrecht (Netherlands). pp. 777–778.

    Google Scholar 

  • Irisarri, P., Gonnet, S. and Monza, J. (2001). Cyanobacteria in Uruguayan rice fields: Diversity, nitrogen fixing ability and tolerance to herbicides and combined nitrogen. J. Bacteriol., 91, 95–103.

    CAS  Google Scholar 

  • Jaiswal, P., Prasanna, R., Nayak, S., Sood, A. and Suseela, M.R. (2008). Characteriza-tion of rhizo-cyanobacteria and their associations with wheat seedlings. Egyptian J. Biol., 10, 20–27.

    Google Scholar 

  • Jala, S. and Goyal, D. (2006). Fly-ash as a soil ameliorant for improving crop production – A review. Bioresour. Technol., 97, 1136–1147.

    Article  CAS  Google Scholar 

  • Jalapathi, R. L., Venkatachari, A., Sundara Rao, W.V.B. and Raj Reddy, K. (1977). Curr. Sci., 46(2), 50.

    Google Scholar 

  • Jayasinghearachchi, H.S. and Seneviratne, G. (2004). A bradyrhizobial-Penicillium spp. biofilm with nitrogenase activity improves N2 fixing symbiosis of soybean, Biol. Fertil. Soils, 40, 432–434.

    CAS  Google Scholar 

  • Jeffries, D.L., Klopatek, J.M., Link, S.O. and Bolton, H. Jr. (1992). Acetylene reduction by cryptogamic crusts from a black brush community as related to resaturation and dehydration. Soil Biol. Biochem., 24, 1101–1105.

    Article  CAS  Google Scholar 

  • Jha, K.K., Ali, M.A., Singh, R. and Bhattacharya, P.B. (1965). Increasing rice production through the inoculation of Tolypothrix tenuis, a nitrogen fixing blue-green alga. J. Indian Soc. Soil Sci., 13, 161–166.

    Google Scholar 

  • Jones, K. and Stewart, W.D.P. (1969). Nitrogen turnover in marine and brackish habitats. III. The production of extracellular nitrogen by Calothrix scopularaum. Journal of the Murine Biological Association, U.K., 49, 475–488.

    Google Scholar 

  • Jones, K. and Wilson, R.E. (1978). The fate of nitrogen fixed by a free-living blue-green alga. Ecol. Bull., 26, 158–163.

    Google Scholar 

  • Kannaiyan, S. (1999). Bioresources technology for sustainable agriculture. Associated Publishing Company.

    Google Scholar 

  • Karthikeyan, N., Prasanna, R., Sood, A., Jaiswal, P., Nayak, S. and Kaushik, B.D. (2009). Physiological characterization and electron microscopic investigations of cyanobacteria associated with wheat rhizosphere. Folia Microbiologica, 54, 43–51.

    Article  CAS  Google Scholar 

  • Karthikeyan, N., Prasanna, R., Lata, N. and Kaushik, B.D. (2007). Evaluating the potential of plant growth promoting cyanobacteria as inoculants for wheat. European Journal of Soil Biology, 43, 23–30.

    Article  CAS  Google Scholar 

  • Kaushik, B.D. (2005). Blue-green algae (Cyanobacteria) in Agriculture. In: Advances in Microbiology at IARI 1961–2004. B.D. Kaushik (ed.). Mounto Publishing House, New Delhi. pp. 19–34.

    Google Scholar 

  • Kaushik, B.D. (1985). Effect of native algal flora on nutritional and physicochemical properties of sodic soils. Acta Botanica Indica, 13, 143–147.

    Google Scholar 

  • Kaushik, B.D. (1994). Algalization of rice in salt affected soils. Ann. Agril. Res., 15, 105–106.

    Google Scholar 

  • Kaushik, B.D. (1998). Use of cyanobacterial biofertilizer in rice cultivation: A Technology Improvement. In: Cyanobacterial Biotechnology. G. Subramanian, B.D. Kaushik, G.S. Venkataraman (Eds). Science Publs. Inc. USA. pp. 211–222.

    Google Scholar 

  • Kaushik, B.D. and Prasanna, R. (1998). Improved cyanobacterial biofertilizer production and N-saving in rice cultivation. pp.145–155. In: D.B. Sahoo. and S.Z. Quasim(eds), Sustainable Aquaculture, P.P.H. Publications, New Delhi.

    Google Scholar 

  • Khan, Z.U.M., Tahmida Begum, Z.N., Mandal, R. and Hossain, M.Z. (1994). Cyanobacteria in rice soils. World J Microbiol Biotechnol., 10, 296–298.

    Article  CAS  Google Scholar 

  • Khush, G.S. (2005). What it will take to feed 5.0 billion rice consumers in 2030. Plant Mol. Biol., 59, 1–6.

    Article  CAS  Google Scholar 

  • Kikuchi, E. and Kurihara, Y. (1977). In vitro studies on the effects of tubicids on the biological, chemical and physical characteristics of submerged ricefield soil and overlying water. Oikos, 29, 348–356.

    Article  CAS  Google Scholar 

  • Kopteva, Z.H.P. (1970). Biosynthesis of thiamine, riboflavin and Vitamin B12 by some blue-green algae. Mikrobiol. Zh (Kiev)., 32, 429–433.

    CAS  Google Scholar 

  • Kundu, D.K. and Ladha, J.K. (1995). Efficient management of soil and biologically fixed N2 in intensively cultivated rice fields. Soil Biol. Biochem., 27, 431–439.

    Article  CAS  Google Scholar 

  • Lee, K.K. and Watanabe, I. (1977). Problems of the acetylene reduction technique applied to water-saturated paddy soils. Appl. Environ. Microbiol., 34, 654–660.

    CAS  Google Scholar 

  • Lee, K.K., Castro, T. and Yoshida, T. (1977). Nitrogen fixation throughout growth and varietal differences in nitrogen fixation by the rhizosphere of rice planted in pots. Plant and Soil, 48, 613–619.

    Article  CAS  Google Scholar 

  • Ley, S.N. (1959). The effect of nitrogen fixing blue-green alga on the yield of rice plant. Acta Hydrob. Sinica, 4, 440–444.

    Google Scholar 

  • Lightfoot, C., Roger, P.A., Cagauan, A.G. and DelaCraz, C.R. (1990). A fish crop may improve rice yields and rice fields. Naga, 13, 12–13.

    Google Scholar 

  • Lin, X., Zhou, W., Zhu, D., Chen, H. and Zhang, Y. (2006). Nitrogen accumulation, remobilization and partitioning in rice (Oryza sativa L.) under an improved irrigation practice. Field Crops Res., 96, 448–454.

    Google Scholar 

  • Lowendorf, H.S. (1980). Biological nitrogen fixation in flooded rice. Agronomy Paper No. 1305. Agronomy Dept, Cornell Univ. Ithaca, NY.

    Google Scholar 

  • Mac Rae, I.C. and Castro, T.F. (1967). Nitrogen fixation in some tropical rice soils. Soil Sci., 103, 277–280.

    Article  CAS  Google Scholar 

  • Mah Thien-Fah, C. and O’Toole George, A. (2001). Mechanisms of biofilm resistance to antimicrobial agents. Trends Microbiol., 9(1), 34–39.

    Article  Google Scholar 

  • Mahajan, A., Choudhary, A.K., Jaggi, R.C. and Dogra, R.K. (2003). Importance of biofertilizers in sustainable agriculture. Farmer’s Forum, 3, 17–19.

    Google Scholar 

  • Mandal, B., Vlek, P.L.G. and Mandal, L.N. (1999). Beneficial effects of blue-green algae and Azolla, excluding supplying nitrogen, on wetland rice fields: A review. Biol. Fertil. Soils, 28, 329–342.

    Article  CAS  Google Scholar 

  • Manjunath, M., Prasanna, R., Sharma, P., Nain, L. and Singh, R. (2011). Developing PGPR consortia using novel genera Providencia and Alcaligenes along with cyanobacteria for wheat. Archives of Agronomy and Soil Science, 57, 873–887.

    Article  CAS  Google Scholar 

  • Mateo, P., Bonilla, I., Fernandez-Valiente, E. and Sanchez-Maseo, E. (1986). Essentiality of boron for dinitrogen fixation in Anabaena sp. PCC7119. Plant Physiol., 81, 430–433.

    Google Scholar 

  • Matsuguchi, T. (1979). Factors affecting heterotrophic nitrogen fixation in submerged rice soils. In: Nitrogen and Rice. International Rice Research Institute, Los Banos, Philippines. pp. 207–222.

    Google Scholar 

  • Mayland, H.F. and McIntosh, T.H. (1966). Availability of biologically fixed atmospheric nitrogen-15 to higher plants. Nature, 209, 421–422.

    Article  CAS  Google Scholar 

  • Meharg, A.A. (2004). Arsenic in rice-understanding a new disaster for South-East Asia. Trends Plant Sci., 9, 415–417.

    Article  CAS  Google Scholar 

  • Miam, M.H. and Stewart, W.D.P. (1985). Fate of nitrogen applied as Azolla and cyanobacteria (cyanobacteria) in water-logged rice soils as 15 N tracer study. Plant Soil, 83, 363–370.

    Article  Google Scholar 

  • Miflin, B. J., & Lea, P. J. (1976). The pathway of nitrogen assimilation in plants. Phytochemistry, 15(6), 873–885.

    Article  CAS  Google Scholar 

  • Misra, H.S. and Tuli, R. (1994). Nitrogen fixation by Plectonema boryanum has a photosystem II independent component. Microbiology, 140, 971–976.

    Article  CAS  Google Scholar 

  • Misra, H.S. and Tuli, R. (2000). Differential expression of photosynthesis and nitrogen fixation genes in the cyanobacterium Plectonema boryanum. Plant Physiology, 122, 731–736.

    Article  CAS  Google Scholar 

  • Mittra, B.N., Karmakar, S., Swain, D.K. and Ghosh, B.C. (2005). Flyash – A potential source of soil amendment and a component of integrated plant nutrient supply system. Fuel, 84, 1447–1451.

    Article  CAS  Google Scholar 

  • Molisch, H. (1926). Pflanzenbiologie in Japan. G. Fischer.

    Google Scholar 

  • Molope, M.B., Page, E.R. and Grieve, I.C. (1985). A comparison of soil aggregate stability test using soils with contrasting cultivation histories. Commun. Soil Sci. Plant Anal., 16, 315–322.

    Article  Google Scholar 

  • Nain, L., Rana, A., Joshi, M., Jadhav, S.D., Kumar, D., Shivay, Y.S., Paul, S. and Prasanna, R. (2010). Evaluation of synergistic effects of bacterial and cyanobacterial strains as biofertilizers for wheat. Plant Soil, 331, 217–230.

    Article  CAS  Google Scholar 

  • Nayak, S. and Prasanna, R. (2007). Soil pH and its role in cyanobacterial abundance and diversity in rice field soils. Applied Ecol. Environ. Res., 5(2), 103–113.

    Article  Google Scholar 

  • Nayak, S., Prasanna, R., Dominic, T.K. and Singh, P.K. (2001). Floristic abundance and relative distribution of different cyanobacterial genera in rice field soil at different crop growth stages. Phykos, 40(1and2), 15–22.

    Google Scholar 

  • Nayak, S., Prasanna, R., Prasanna, B.M. and Sahoo, D.B. (2007). Analyzing diversity among Indian isolates of Anabaena (Nostocales, Cyanophyta) using morphological, physiological and biochemical characters. World Journal of Microbiology and Biotechnology, 23, 1575–1584.

    Article  CAS  Google Scholar 

  • Nayak, S., Prasanna, R., Prasanna, B.M. and Sahoo, D.B. (2009). Genotypic and phenotypic diversity of Anabaena isolates from diverse rice agro-ecologies of India. J. Basic Microbiol., 49, 165–177.

    Article  CAS  Google Scholar 

  • Nayak, S., Prasanna, R., Pabby, A., Dominic, T.K. and Singh, P.K. (2004). Effect of Cyanobacteria – Azolla biofertilizers on nitrogen fixation and chlorophyll accumulation at different depths in soil cores. Biol. Fertil. Soils, 40, 67–72.

    Article  CAS  Google Scholar 

  • Nguyen, M.L., Haynes, R.J. and Goh, K.M. (1995). Nutrient budgets and status in three pairs of conventional and alternative and mixed cropping farms in Canterbury, New Zealand. Agriculture Ecosystems and Environment, 52, 149–162.

    Article  Google Scholar 

  • Norman, R.J., Guindo, D., Wells, B.R. and Wilson, C.E. (1992). Seasonal accumulation and partitioning of nitrogen-15 in rice. Soil Sci. Soc. Amer. J., 56, 1521–1527.

    Article  Google Scholar 

  • Okuda, A. and Yamaguchi, M. (1952). Algae and atmospheric nitrogen fixation in paddy soils. II. Relation between the growth of cyanobacteria and physical or chemical properties of soil and effect of soil treatments and inoculation on the nitrogen fixation. Mem. Res. Inst. Food Sci. Kyoto Univ., 4, 1–11.

    Google Scholar 

  • Olkarinen, M. (1996). Biological soil amelioration as the basis of sustainable agriculture and forestry. Biol Fertil Soils, 22, 342–344.

    Article  Google Scholar 

  • Osa-Afiana, L.O. and Alexander, M. (1981). Factors affecting predation by a microcrustacean (Cypris sp.) on nitrogen fixing blue-green algae. Soil Biol. Biochem., 13, 27–32.

    Google Scholar 

  • Pabbi, S., Prasanna, R., Dhar, D.W. and Singh, P.K. (2000). In: Biofertilizers. Cyanobacteria and Azolla. Singh, P.K., Dhar, D.W., Pabbi, S., Prasanna, R. and Arora, A. (eds). Venus Printers and Publishers, New Delhi. pp. 83–99.

    Google Scholar 

  • Pandey, V.N., Gupta, R.N. and Srivastava, A.K. (1993). Effect of Cyanobacteria-Biofertilizer supplement on growth and yield of rice (Oryza sativa) variety Saket-4. Nat. Acad. Sci. Letters, 16(11 and12), 281–284.

    Google Scholar 

  • Patel, S.R., Srivastava, S.K. and Chandravanshi, B.R. (1984). Research News, 9(3), 25.

    Google Scholar 

  • Patrick, W.H. Jr. (1982). Nitrogen transformations in submerged soils. In: Nitrogen in Agricultural Soils. Agronomy Monograph No. 22, pp. 449–365. American Agronomy Society. Madison.

    Google Scholar 

  • Pearce, J., Leach, C.K. and Carr, N.G. (1969). The incomplete tricarboxylic acid cycle in the blue green alga Anabaena variabilis. J. Gen. Microbiol., 55, 371–378.

    Article  CAS  Google Scholar 

  • Peters, G.A. and Mayne, B.C. (1974). Azolla-Anabaena azollae relationship II Localization of nitrogenase activity as assayed by acetylene reduction. Plant Physiology, 53, 119–126.

    Google Scholar 

  • Prasanna, R., Sharma, B.K., Sharma, R.K. and Kaushik, B.D. (1998). Standardization of growth parameters and formulation of medium for cyanobacterial biofertilizer strains. Indian Journal of Microbiology, 38, 211–215.

    Google Scholar 

  • Prasanna, R. and Kaushik, B.D. (1994). Physiological and molecular genetic aspects of nitrogen fixation in non-heterocystous cyanobacteria. Indian Journal of Experimental Biology, 32, 248–251.

    Google Scholar 

  • Prasanna, R. and Kaushik, B.D. (1995). Nitrogen fixation and nif gene organization in branched heterocystous cyanobacteria: Variation for the presence of xisA. Folia Microbiologica, 40(2), 176–180.

    Article  CAS  Google Scholar 

  • Prasanna, R., & Kaushik, B. D. (2006). Cyanobacteria in soil health and sustainable agriculture. Health and Environment, 3, 91–105.

    Google Scholar 

  • Prasanna, R. and Nayak, S. (2007). Influence of diverse rice soil ecologies on cyanobacterial diversity and abundance. Wetlands Ecol. Managmt., 15, 127–134.

    Article  Google Scholar 

  • Prasanna, R., Babu, S., Rana, A., Kabi, S.R., Chaudhary, V., Gupta, V., Kumar, A., Shivay, Y.S., Nain, L. and Pal, R.K. (2013a). Evaluating the establishment and agronomic proficiency of cyanobacterial consortia as organic options in wheat-rice cropping sequence. Experimental Agriculture, 49, 416–434.

    Article  Google Scholar 

  • Prasanna, R., Chaudhary, V., Gupta, V., Babu, S., Kumar, A., Shivay, Y.S. and Nain, L. (2013b). Cyanobacteria mediated plant growth promotion and bioprotection against Fusarium wilt in tomato. European Journal of Plant Pathology, 13, 337–353.

    Article  Google Scholar 

  • Prasanna, R., Jaiswal, P., Singh, Y.V. and Singh, P.K. (2008). Influence of biofertilizers and organic amendments on nitrogenase activity and phototrophic biomass of soil under wheat. Acta Agron. Hung., 56(2) , 149–159.

    Article  CAS  Google Scholar 

  • Prasanna, R., Gupta, V., Natarajan, C. and Chaudhary, V. (2010). Allele mining for chitosanases and microcystin-like compounds in Anabaena strains. World Journal of Microbiology and Biotechnology, 26, 717–724.

    Article  CAS  Google Scholar 

  • Prasanna, R., Jaiswal, P., Nayak, S., Sood, A. and Kaushik, B.D. (2009a). Cyanobacterial diversity in the rhizosphere of rice and its ecological significance. Indian Journal of Microbiology, 49, 89–97.

    Article  CAS  Google Scholar 

  • Prasanna, R., Joshi, M., Rana, A., Shivay, Y.S. and Nain, L. (2012). Influence of co-inoculation of bacteria– cyanobacteria on crop yield and C-N sequestration in soil under rice crop. World Journal of Microbiology and Biotechnology, 28, 1223–1235.

    Article  CAS  Google Scholar 

  • Prasanna, R., Lata, N., Tripathi, R., Gupta, V., Middha, S., Joshi, M., Ancha, R. and Kaushik, B.D. (2008). Evaluation of fungicidal activity of extracellular filtrates of cyanobacteria – Possible role of hydrolytic enzymes. Journal of Basic Microbiology, 48, 186–194.

    Article  CAS  Google Scholar 

  • Prasanna, R., Lata, N., Pandey, A.K. and Nayak, S. (2010). Exploring the ecological significance of microbial diversity and networking in the rice ecosystem. In: Soil Biology and Agriculture in the Tropics. Patrice Dion (Ed.), Soil Biology series. Springer. pp. 257–298.

    Google Scholar 

  • Prasanna, R., Nain, L., Ancha, R., Shrikrishna, J., Joshi, M. and Kaushik, B.D. (2009b). Rhizosphere dynamics of inoculated cyanobacteria and their growth-promoting role in rice crop. Egyptian J. Biol., 11, 26–36.

    Google Scholar 

  • Prasanna, R., Pattnayak, S., Sugitha, T.C.K., Nain, L. and Saxena, A.K. (2011). Development of cyanobacterium based biofilms and their in vitro evaluation for agriculturally useful traits. Folia Microbiologica, 56, 49–58.

    Article  CAS  Google Scholar 

  • Prasanna, R., Tripathi, U., Dominic, T.K., Singh, A.K., Yadav, A.K. and Singh, P.K. (2003). An improvised technique for measurement of nitrogen fixation by blue-green algae and Azolla using moist soil core from rice fields. Expt. Agric., 39, 145–150.

    Article  CAS  Google Scholar 

  • Prasanna, R., Triveni, S., Bidyarani, N., Babu, S., Yadav, K., Adak, A., Khetarpal, S., Pal, M., Shivay, Y.S. and Saxena, A.K. (2013c). Evaluating the efficacy of cyanobacterial formulations and biofilmed inoculants for leguminous crops. Archives of Agronomy and Soil Science, 60, 349–366.

    Article  Google Scholar 

  • Querijero-Palacpac, N.M., Milagrosa, M. and Boussiba, S. (1990). Mass cultivation of the nitrogen-fixing cyanobacterium Gloeotrichia natans, indigenous to rice-fields. J. Appl. Phycol., 2, 319–325.

    Article  CAS  Google Scholar 

  • Rai, U.N., Pandey, K., Sinha, S., Singh, A., Saxena, R., & Gupta, D.K. (2004). Revegetating fly ash landfills with Prosopis juliflora L.: impact of different amendments and Rhizobium inoculation. Environment International, 30(3), 293–300.

    Google Scholar 

  • Rajaram, H. and Apte, S.K. (2003). Heat-shock response and its contribution to thermotolerance of the nitrogen-fixing cyanobacterium Anabaena sp. strain L-31. Arch Microbiol, 179, 423–429.

    CAS  Google Scholar 

  • Rajaram, H. and Apte, S.K. (2008). Nitrogen status and heat-stress dependent differential expression of the cpn60 chaperonin gene influences thermotolerance in the cyanobacterium Anabaena. Microbiology, 154, 317–325.

    Article  CAS  Google Scholar 

  • Rajaram, H., Ballal, A.D., Apte, S.K., Weigert, T. and Schumann, W. (2001). Cloning and characterization of the major groESL operon from a nitrogen-fixing cyanobacterium Anabaena sp. strain L-31. Biochim Biophys Acta, 1519, 143–146.

    Article  CAS  Google Scholar 

  • Rakshit, S.K., Loan, N.T. and Johnsen, S. (1999). Fate of blue green algae in the food web of flooded rice field ecosystems. Biol. Fertil. Soils, 29, 141–145.

    Article  Google Scholar 

  • Rana, A., Joshi, M., Prasanna, R., Shivay, R.S. and Nain, L. (2012). Biofortification of wheat through inoculation of plant growth promoting rhizobacteria and cyanobacteria. Eur J Soil Biol, 118–126.

    Google Scholar 

  • Rao, D. L. N., & Burns, R. G. (1990). Use of blue-green algae and bryophyte biomass as a source of nitrogen for oil-seed rape. Biology and fertility of soils, 10(1), 61–64.

    Google Scholar 

  • Rathore, A.L., Chipde, S.J. and Pal, A.R. (1995). Direct and residual effect of bio-organic and inorganic fertilizers in rice-wheat cropping system. Indian J. Agron., 40, 14–19.

    Google Scholar 

  • Rausch, T., & Wachter, A. (2005). Sulfur metabolism: a versatile platform for launching defence operations. Trends in plant science, 10(10), 503–509.

    Article  CAS  Google Scholar 

  • Rautaray, S.K., Ghosh, B.C. and Mittra, B.N. (2003). Effect of fly ash, organic wastes and chemical fertilizers on yield, nutrient uptake, heavy metal content and residual fertility in rice-mustard cropping system under acid lateritic soils. Bioresour. Technol., 90, 275–283.

    Article  CAS  Google Scholar 

  • Reddy, B.R., Apte, S.K. and Thomas, J. (1989). Enhancement of cyanobacterial salt tolerance by combined nitrogen. Plant Physiol, 89, 204–210.

    Article  CAS  Google Scholar 

  • Relwani, L.L. (1963). Role of blue-green algae on paddy yield. Curr. Sci., 32, 417–418.

    Google Scholar 

  • Reynaud, P.A. and Metting, B. (1988). Colonization potential of cyanobacteria on temperate irrigated soils of Washington State, U.S.A. Biol. Agri. Hort., 5, 197–208.

    Article  Google Scholar 

  • Reynault, J., Sasson, A., Pearson, H.W. and Stewart, W.D.P. (1975). Nitrogen fixing algae in Morocco. In: Nitrogen fixation by Free Living Microorganisms. Stewart, W.D.P. (ed.). Cambridge Univ. Press, London. pp. 229–248.

    Google Scholar 

  • Rice, W.A. and Paul, E.A. (1971). The acetylene reduction assay for measuring nitrogen fixation in waterlogged soil. Can. J. Microbiol., 17, 1049–1056.

    Article  CAS  Google Scholar 

  • Roger, P.A. and Kulasooriya, S.A. (1980). Cyanobacteria and rice. International Rice Research Institute, Manila.

    Google Scholar 

  • Roger, P.A. (1991). Reconsidering the utilization of cyanobacteria in wetland rice cultivation. In: Biological N2 fixation associated with rice production. Dutta, S.K. and Sloger, C. (eds). Oxford and IBH, New Delhi. pp. 119–141.

    Google Scholar 

  • Roger, P. A. (1996). Biology and management of the floodwater ecosystem in rice fields. Int. Rice Res. Inst.

    Google Scholar 

  • Roger, P.A. and Ladha, J.K. (1992). Biological N2 fixation in wetland rice fields: Estimation and contribution to nitrogen balance. Plant Soil, 141, 41–55.

    Article  CAS  Google Scholar 

  • Roger, P.A. and Reynaud, P.A. (1979). Ecology of blue-green algae in paddy fields. In: Nitrogen and Rice, IRRI, Los Banos. pp. 289–309.

    Google Scholar 

  • Roger, P.A. and Reynaud, P.A. (1982). Free living blue-green algae in tropical soils. In: Microbiology of tropical soils and plant productivity. Dommergues, Y. and Diem, H. (eds). Martinus Nijhoff Press, The Hague. pp. 147–168.

    Google Scholar 

  • Roger, P.A. and Watanabe, I. (1986). Technologies for utilizing biological nitrogen fixation in lowland rice: Potentialities, current usage and limiting factors. Fer. Res., 27, 470–477.

    Google Scholar 

  • Roger, P.A., Grant, I.F., Reddy, P.M. and Watanabe, I. (1987). The photosynthetic aquatic biomass in wetland rice fields and its effect on nitrogen dynamics. In: Efficiency of nitrogen fertilizers for rice. IRRI, Manila. pp. 43–68.

    Google Scholar 

  • Roger, P.A., Reddy, P.M. and Remulla-Jimenez, R. (1988). Photodependent acetylene reducing activity (ARA) in ricefields under various fertilizer and biofertilizer management. In: Nitrogen fixation: Hundred years after. Bothe, H., De Bruijn,, F.J. and Newton, W.E. (eds). Gustav Fischer, Stuttgart, New York. pp. 827.

    Google Scholar 

  • Roger, P.A., Zimmerman, W.J. and Lumpkin, T.A. (1993). Microbiological management of wetland rice fields. In: Soil microbiological ecology-application in agricultural and ecological management. Baline Metting, F. Jr. (ed.). Marcel Dekker, New York, Basel Hong Kong. pp. 417–455.

    Google Scholar 

  • Rogers, S.L. and Burns, R.G. (1994). Changes in aggregate stability, nutrient status, indigenous microbial populations and seedling emergence following inoculation of soil with Nostoc muscorum. Biol. Fertil. Soils, 18, 209–215.

    Article  Google Scholar 

  • Rowell, P., Enticott, S. and Stewart, W.D.P. (1977). Glutamine synthetase and nitrogenase activity in the blue green alga Anabaena cylindrica. New Phytologist, 79, 41–54.

    Article  CAS  Google Scholar 

  • Roychoudhury, P., Pillai, G.R., Pandey, S.L., Krishnamurti, G.S.R. and Venkataraman, G.S. (1983). Effect of blue-green algae on aggregate stability and rice yield under different irrigation and nitrogen levels. Soil Till. Res., 3, 61–66.

    Article  Google Scholar 

  • Saha, K.C. and Mandal, L.N. (1980). A green house study on the effect of inoculation of blue-green algae in an alluvial soil treated with P and Mo on the yield of rice and changes in the N content of soil. Plant Soil, 57, 23–30.

    Article  CAS  Google Scholar 

  • Saha, K.C. and Mandal, L.N. (1979). Effect of algal growth on the availability of P, Fe and Mn in rice soils. Plant Soil, 52, 139–149.

    Article  CAS  Google Scholar 

  • Saha, K.C., Panigrahi, B.C. and Singh, P.K. (1982). Cyanobacteria or Azolla addition on the nitrogen and phosphorus availability and redox potential of a flooded rice soil. Soil Biol. Biochem., 14 (1), 23–26.

    Article  CAS  Google Scholar 

  • Saleque, M.A., Abedin, M.J., Bhuiyan, N.I., Zaman, S.K. and Panaullah, G.M. (2004). Long-term effects of inorganic and organic fertilizer sources on yield and nutrient accumulation of lowland rice. Field Crops Res., 86, 53–65.

    Article  Google Scholar 

  • Santra, S.C. (1991). Rice field cyanobacteria and its utilization prospect as bio-fertilizer in West Bengal, India. Proc. Nat. Symp. on cyanobacterial nitrogen fixation, New Delhi. pp. 385–389.

    Google Scholar 

  • Santra, S.C. (1993). Biology of rice-fields. In: Cyanobacteria. Daya Publishing House, Delhi. pp. 184.

    Google Scholar 

  • Schramm, J.R. (1914). The relation of certain species of grass-green algae to elementary nitrogen. Ann. Mo. Bot. Gdn,, 1, 157–184.

    Article  CAS  Google Scholar 

  • Seneviratne, G., Thilakaratne, R. M. M. S., Jayasekara, A. P. D. A., Seneviratne, K. A. C. N., Padmathilake, K. R. E., & De Silva, M. S. D. L. (2009). Developing beneficial microbial biofilms on roots of non legumes: A novel biofertilizing technique. In Microbial strategies for crop improvement (pp. 51–62). Springer Berlin Heidelberg.

    Google Scholar 

  • Sevilleja, R.C., Cagauan, A.G. (1992). Rice-fish Asia working group (CLSU-FAC component) program report. 1st July to 31st December 1991). Central Luzon State University, Nuera Ecija, Philippines.

    Google Scholar 

  • Shanmugasundaram, S.S. (1996) Consolidated Report, Mission mode project on technology development and demonstration of algal biofertilizer, MKU, Madurai, India.

    Google Scholar 

  • Sherr, B.F., Sherr, E.B. and Berman, T. (1983). Grazing, growth and ammonium excretion rates of a heterotrophic microflagellate fed with four species of bacteria. Appl. Environ. Microbiol., 45, 1196–1201.

    CAS  Google Scholar 

  • Sikka, R. and Kansal, B.D. (1995). Effect of fly-ash application on yield and nutrient composition of rice, wheat and on pH and available nutrient status of soils. Bioresour. Technol., 51, 199–203.

    Article  CAS  Google Scholar 

  • Singh, A.L. and Singh, P.K. (1987). Nitrogen fixation and balance studies of rice soil. Biol. Fert. Soils, 4, 15–19.

    Google Scholar 

  • Singh, J.S., Pandey, V.C. and Singh, D.P. (2011). Efficient soil microorganisms: A new dimension for sustainable agriculture and environmental development. Agric Ecosyst Environ, 140, 339–353.

    Article  Google Scholar 

  • Singh, K.N. and Singh, R.P. (1992). Farming system research and development-A holistic approach for sustainable agriculture growth. In: Proceedings of XII National Symposium on Resource Management for Sustained Crop Production held in Rajasthan Agriculture Univerisity, Bikaner during Feb. 25–28, 391–398.

    Google Scholar 

  • Singh, P.K. (1978). Nitrogen economy of rice soils in relation to nitrogen fixation by blue-green algae and Azolla. In: National Symposium on increasing rice yields in Kharif. CRRI., Cuttack.

    Google Scholar 

  • Singh, P.K. (1985). Nitrogen fixation by blue-green algae in paddy fields. In: Rice Research in India, ICAR, New Delhi. pp. 344–362.

    Google Scholar 

  • Singh, P.K. (1988). Biofertilization of rice crop. In: Biofertilizers: potentialities and problems. Sen, S.P. and Palit, P. (eds). Plant Physiology Forum, Calcutta. pp. 109–114.

    Google Scholar 

  • Singh, P.K. (1989). Use of Azolla in Asian Agriculture. Applied Agricultural Research, 4, 149–161.

    Google Scholar 

  • Singh, P.K. and Bisoyi, P.K. (1989). Blue-green algae in rice fields. Phykos, 28, 181–195.

    Google Scholar 

  • Singh, P.K., Panigrahi, B.C. and Satapathy, K.B. (1981). Comparative efficiency of Azolla, blue-green algae, other organic manures in relation to N and P availability in a flooded rice soil. Palnt Soil., 62, 35–44.

    Article  Google Scholar 

  • Singh, R.N. (1961). Role of blue-green algae in nitrogen economy of Indian agriculture. ICAR, New Delhi.

    Google Scholar 

  • Sinha, R.K., Valani, D., Chauhan, K. and Agarwal, S. (2014). Embarking on a second green revolution for sustainable agriculture by vermiculture biotechnology using earthworms: Reviving the dreams of Sir Charles Darwin. Int J Agric Health Saf, 1, 50–64.

    Google Scholar 

  • Smith, V.H. and Crews, T. (2014). Applying ecological principles of crop cultivation in large scale algal biomass production. Algal Res, 4, 23–34.

    Article  Google Scholar 

  • Sprent, J.I. and Sprent, P. (1990). Nitrogen fixing organisms—Pure and applied aspects. Chapman and Hall, London.

    Book  Google Scholar 

  • Stewart, P.S. (2002). Mechanisms of antibiotic resistance in bacterial biofilms. Int. J. Med. Microbiol., 292, 107–113.

    Article  CAS  Google Scholar 

  • Stewart, W.D.P. (1967). Transfer of biologically fixed nitrogen in a sand dune slack region. Nature, 214, 603–604.

    Article  Google Scholar 

  • Stewart, W.D.P. and Lex, M. (1970). Nitrogenase activity in Plectonema boryanum 594. Arch. Microbiol., 75, 250–260.

    Google Scholar 

  • Stewart, W.D.P., Rowell, P., Ladha, J.K. and Sanpio, M.J.A. (1979). Blue-green algae (cyanobacteria)—Some aspects related to their sources of fixer nitrogen in paddy soils. In: Nitrogen and Rice, IRRI, Los Banos. pp. 263–285.

    Google Scholar 

  • Subramanyan, R. and Manna, G.B. (1966). Relative response of the rice plant to blue-green algae and ammonium sulphate in bulk trials. Curr. Sci., 35, 482–483.

    Google Scholar 

  • Sundara Rao, W.V.B., Goyal, S.K. and Venkataraman, G.S. (1963). Effect of inoculation of Aulosira fertilissima on rice plants. Curr. Sci., 32, 366–367.

    Google Scholar 

  • Swaminathan, M.S. (1982). Biotechnology research and third world agriculture. Science, 218(4576), 967–972.

    Article  CAS  Google Scholar 

  • Swarnalakshmi, K., Prasanna, R., Kumar, A., Pattnaik, S.C., Chakravarty, K.C., Shivay, S.A., Singh, B.R. and Saxena, A.K. (2013). Evaluating the influence of novel cyanobacterial biofilmed biofertilizers on soil fertility and plant fertility and plant nutrition in wheat. Eur J Soil Biol, 55, 107.

    Article  Google Scholar 

  • Swarnalakshmi, K., Dhar, D.W. and Singh, P.K. (2006). Cyanobacteria: A potential biofertilizer for sustainable rice cultivation. Proc. Indian Natn. Sci. Acad., 72, 135–143.

    Google Scholar 

  • Swarnalakshmi, K., Dhar, D.W. and Singh, P.K. (2007a). Evaluation of blue green algal inoculation on specific soil parameters. Acta Agronomica Hungarica, 55(3), 307–313.

    Article  CAS  Google Scholar 

  • Swarnalakshmi, K., Dhar, D.W. and Singh, P.K. (2007b). Potential of Cyanobacteria on C-N content and yield attributes of rice crop under phytotronic condition. Indian Journal of Ecology, 34(1), 47–49.

    Google Scholar 

  • Thomas, J. (1997). Biological nitrogen fixation. Nucl India, 15, 2–8.

    Google Scholar 

  • Thomas, J. and Apte, S.K. (1984). Sodium requirement and metabolism in nitrogen-fixing cyanobacteria. J Biosci, 6, 771–794.

    Article  CAS  Google Scholar 

  • Thomas, J. (1970). Absence of the pigments of photosystem II of photosynthesis in heterocysts of blue-green algae. Nature, 228, 181–183.

    Article  CAS  Google Scholar 

  • Thomas, J., Wolk, C.P., Shaffer, P.W., Austin, S.M. and Galonsky, A. (1975). The initial organic products of fixation of 15 N-labelled nitrogen gas by the blue green alga Anabaena cylindrica. Biochem. Biophys. Res. Commun., 67, 501–507.

    Article  CAS  Google Scholar 

  • Tien, C.J. (2002). Biosorption of metal ions by fresh water algae with different surface characteristics. Process Biochem., 38, 605–613.

    Article  CAS  Google Scholar 

  • Tirol, A.C., Roger, P.A. and Watanabe, I. (1982). Fate of nitrogen from blue green alga in a flooded rice soil. Soil Sci. Plant Nutr., 28, 559–569.

    Article  CAS  Google Scholar 

  • Tisdall, J. M., & Oades, J. (1982). Organic matter and water-stable aggregates in soils. Journal of soil science, 33(2), 141–163.

    Article  CAS  Google Scholar 

  • Tripathi, R. D., Dwivedi, S., Shukla, M. K., Mishra, S., Srivastava, S., Singh, R., … & Gupta, D. K. (2008). Role of blue green algae biofertilizer in ameliorating the nitrogen demand and fly-ash stress to the growth and yield of rice (Oryza sativa L.) plants. Chemosphere, 70(10), 1919–1929.

    Google Scholar 

  • Tripathi, R.D., Srivastava, S., Mishra, S., Singh, N., Tuli, R., Gupta, D.K. and Maathuis, F.J.M. (2007). Arsenic hazards: Strategies for tolerance and remediation by plants. Trends Biotechnol., 25, 158–165.

    Article  CAS  Google Scholar 

  • Tripathi, R.D., Vajpayee, P., Singh, N., Rai, U.N., Kumar, A., Ali, M.B., Kumar, B. and Yunus, M. (2004). Efficacy of various amendments for amelioration of flyash toxicity: Growth performance and metal composition of Cassia siamea Lamk. Chemosphere, 54, 1581–1588.

    Article  CAS  Google Scholar 

  • Tupik, N.D. (1973). Study of the content of group B Vitamins in cells of some blue-green algae in dependence on the culture age. Ukr. Bot. Zh., 30, 636–639.

    CAS  Google Scholar 

  • Venkataraman, G.S. and Shanmugasundaram, S. (1992). Algal Biofertilizer Technology for Rice. Madurai Kamraj University, Madurai, India. pp. 1–24.

    Google Scholar 

  • Venkataraman, G.S. (1961). The role of blue-green algae in agriculture. Sci. Cult., 27, 9–13.

    Google Scholar 

  • Venkataraman, G.S. (1972). Algal biofertilizers and Rice cultivation. Today and Tomorrow Printers, Faridabad, Haryana, India.

    Google Scholar 

  • Venkataraman, G.S. (1975). The role of cyanobacteria in tropical rice cultivation. In: Nitrogen fixation by Free living Microorganisms. Stewart, W.D.P. (ed.). Cambridge Univ. Press. pp. 207–218.

    Google Scholar 

  • Venkataraman, G.S. (1979). Algal inoculation of rice fields. In: Nitrogen and Rice. IRRI, Los Banos. pp. 311–321.

    Google Scholar 

  • Venkataraman, G.S. and Goyal, S.K. (1968). Influence of blue-green algal inoculation on the crop yield of rice plants. Soil Sci. Plant Nutr., 14(6), 249–251.

    Article  Google Scholar 

  • Venkataraman, G.S. and Goyal, S.K. (1969). Influence of blue-green algae on the high yielding paddy variety IR 8. Sci. Culture, 35, 58.

    Google Scholar 

  • Venkataraman, G.S. and Neelakantan, S. (1967). Effect of extracellular constituents of the nitrogen fixing blue-green algae Cylindrospermum muscicola on the root growth of rice seedlings. J. Gen. Appl. Microbiol., 13, 53–61.

    Article  CAS  Google Scholar 

  • Venkataraman, G.S. (1981). Cyanobacteria for rice production. FAO Soils Bulletin No. 46.

    Google Scholar 

  • Ventura, W. and Watanabe, I. (1983). 15 N dilution technique of assessing the contribution of nitrogen fixation to rice plant. Soil Sci. Plant Nutr., 29, 123–131.

    Article  CAS  Google Scholar 

  • Viswanath, B. (1932). Society of Biological Chemists, India, Annual publication.

    Google Scholar 

  • Watanabe, A. (1959). Distribution of N2-fixing blue-green algae in various areas of South and East Asia. J. Gen. Appl. Microbiol., 5, 21–29.

    Article  Google Scholar 

  • Watanabe, A. (1965). Studies on the blue-green algae as green manure in Japan. Proc. Nat. Acad. Sci. India, 35A, 361–369.

    Google Scholar 

  • Watanabe, A. and Kiyohara, T. (1960). Decomposition of blue-green algae as affected by the action of soil bacteria. J. Gen. Appl. Microbiol., 5, 175–179.

    Article  Google Scholar 

  • Watanabe, A. and Yamamoto, Y. (1971). Algal nitrogen fixation in the tropics. Plant Soil (Spl. vol), 403–413.

    Google Scholar 

  • Watanabe, A., Nishigaki, S. and Konishi, C. (1951). Effect of nitrogen fixing cyanobacteria on the growth of rice plant. Nature, 168, 748–749.

    Article  CAS  Google Scholar 

  • Watanabe, I. and Cholitkul, W. (1979). Field studies on nitrogen fixation in paddy soils. In: Nitrogen and rice, IIRI, Los Banos, Philippines. pp. 223–239.

    Google Scholar 

  • Watanabe, I. (1986). Nitrogen fixation by non-legumes in tropical agriculture with special reference to wetland rice. Plant and Soil, 90, 343–357.

    Article  Google Scholar 

  • Watanabe, I. and Roger, P.A. (1984). Nitrogen fixation in wetland rice fields. In: Subba Rao, N.S. (ed.). Current developments in biological nitrogen fixation. Oxford & IBH, New Delhi. pp. 237–276.

    Google Scholar 

  • Watanabe, I., Bai, K.Z., Berja, N.S., Espinas, L.R., Ho, O. and Subudhi, R.P.R. (1981). The Azolla-Anabaena complex and its use in rice culture. IRRI Research Paper Series No. 69.

    Google Scholar 

  • Watanabe, I., Lee, K.K., Alimagno, B.V., Sato, M., Del Rosario, D.C. and De Guzman, M.R. (1977). Biological nitrogen fixation in paddy field studies by in situ acetylene-reduction assays. IRRI Research Paper Series No., 3, 1–16.

    Google Scholar 

  • Webb, J.S., Givskov, M. and Kjelleberg, S. (2003). Bacterial biofilms: Prokaryotic adventures in multicellularity. Curr. Opin. Microbiol., 6, 578–585.

    Article  CAS  Google Scholar 

  • Whitton, B. A., & Potts, M. (2012). Introduction to the cyanobacteria. In Ecology of Cyanobacteria II (pp. 1–13). Springer Netherlands.

    Google Scholar 

  • Wilson, C.E., Norman, R.J. and Wells, B.R. (1989). Seasonal uptake patterns of fertilizer nitrogen applied in split applications to rice. Soil Sci. Soc. Amer. J., 53, 1884–1887.

    Article  Google Scholar 

  • Wilson, J.T., Greenes, S. and Alexander, M. (1980). Effect of microcrustaceans on blue-green algae in flooded soil. Soil Biol. Biochem., 12, 237–240.

    Article  Google Scholar 

  • Winter, G. (1935). Uber die Assimilation der Luftstickstoffs durch endopbytische Blaualgen. Beitr. Biol. Pfl., 23, 295–335.

    CAS  Google Scholar 

  • Wolk, C.P., Thomas, J., Shaffer, P.W., Austin, S.M. and Galonsky, A. (1976). Pathway of nitrogen metabolism after fixation of 15 N-labelled nitrogen gas by the cyanobacterium, Anabaena cylindrica. J. Biol. Chem., 251, 5027–5234.

    CAS  Google Scholar 

  • Wyatt, J.T. and Silvey, J.K.G. (1969). Nitrogen fixation by Gloeocapsa. Science, 165, 908–909.

    Article  CAS  Google Scholar 

  • Yadav, D.N., Tiwari, T.N. and Singh, B.B. (1988). In: Seminar on ‘Problem of soil and reclamation technology’. N.D. University of Agric. and Technology, Faizabad.

    Google Scholar 

  • Yamaguchi, M. (1976). Nitrogen fixation by micro-organisms in paddy soils in relation to their fertility. In: The fertility of paddy soils and fertilizer applications for rice. ASPAC, Taiwan, Republic of China. pp. 60–75.

    Google Scholar 

  • Yanni, Y.G. (1992). Fertilizer responses to nitrogen and cyanobacteria in presence of insecticides. Soil Biol. Biochem., 24, 1085–1088.

    Article  CAS  Google Scholar 

  • Yoshida, T. and Ancajes, R. R. (1971). Nitrogen-fixing activity in upland and flooded rice fields. Soil Sci. Soc. America J., 37, 42–46.

    Article  Google Scholar 

  • Yoshida, T. and Rinaudo, G. (1982). Heterotrophic N, fixation in paddy soils. In: Microbiology of Tropical soils and Plant Productivity. Dommergues, Y.R. and Diem, H.G. (Eds). Martinus-Nijhoff, The Hague. pp. 75–107.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dolly Wattal Dhar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Capital Publishing Company

About this chapter

Cite this chapter

Dhar, D.W., Prasanna, R., Pabbi, S., Vishwakarma, R. (2015). Significance of Cyanobacteria as Inoculants in Agriculture. In: Das, D. (eds) Algal Biorefinery: An Integrated Approach. Springer, Cham. https://doi.org/10.1007/978-3-319-22813-6_16

Download citation

Publish with us

Policies and ethics