Skip to main content

Integrating Microalgae Cultivation with Wastewater Treatment for Biodiesel Production

  • Chapter
Algal Biorefinery: An Integrated Approach

Abstract

Microalgae are responsible for more than half of the world’s primary production of oxygen. They are the simplest and most abundant form of plant life on the earth (Energy from algae (Technical Summary. Scott Maden, 2010). These photosynthetic organisms are categorized under third generation biofuels and are known to have high oil and biomass yields, can be cultivated with wastewater, do not need arable land for cultivation, do not compete with common food resources and very efficiently use water and nutrients for growth (Hannon et al., Biofuels 1:763–784, 2010). There are various routes of metabolism which microalgae have adopted for their growth and survival viz., autotrophic, heterotrophic and mixotrophic. They are capable of shifting their metabolism in response to changes in the environmental conditions (Devi et al., J Renew Energy 43:276–283, 2012). Algal cultivation for biodiesel production is considered more amenable a technology than the cultivation of oil crops (Chisti, Biotechnol Adv 25:294–306, 2007) because the yields of algae-derived oils are much higher (Abou-Shanab et al., J Power Energy Eng 1:4–6, 2010). Autotrophically algae gain energy through light by fixing atmospheric CO2 (Devi and Venkata Mohan, Bioresour Technol 112:116–123, 2012). However, low biomass yields, requirement of cultivation systems with large surface area and shallow depth for better access of light are some of the disadvantages associated with autotrophic mode of nutrition. In the absence of light, the photosynthetic process gets suppressed and algae gain energy from alternative organic processes using heterotrophic pathways that convert sugar into lipids (Perez-Garcia et al., J Phycol 46:800–812, 2010). This pathway leads to significantly denser biomass, facilitating greater lipid yields.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abou-Shanab, R.A.I., Jeon, B.H., Song, H., Kim, Y. and Hwang, J. (2010). Algae-Biofuel: Potential use as sustainable alternative green energy. Journal on Power and Energy Engineering, 1, 4–6.

    Google Scholar 

  • Bracmort, K. (2013). Algae’s Potential as a Transportation Biofuel. Congressional Research Service Report for Congress. USA.

    Google Scholar 

  • Becker, E.W. (1994). Microalgae Biotechnology and Microbiology. Cambridge University Press, Cambridge. Volume 10 of Cambridge Studies in Biotechnology. ISBN 0521350204, 9780521350204.

    Google Scholar 

  • Beevi, U.S. and Sukumaran, R.K. (2014). Cultivation of microalgae in dairy effluent for oil production and removal of organic pollution load. Bioresour. Technol., 165, 295–301.

    Article  Google Scholar 

  • Behrens, P.W. (2005). Photobioreactor and fermentors: The light and the dark sides of the growing algae. In: Andersen, R.A. (Ed.), Algal Culturing Techniques. Elsevier Academic Press, 189–204.

    Google Scholar 

  • Bisen, P.S., Sanodiya, B.S., Thakur, G.S., Baghel, R.K. and Prasad, G.B.K.S. (2010). Biodiesel production with special emphasis on lipase-catalyzed transesterification. Biotechnol. Lett., 32, 1019–1030.

    Article  CAS  Google Scholar 

  • Boyle, N.R. and Morgan, J.A. (2009). Flux balance analysis of primary metabolism in Chlamydomonas reinhardtii. BMC Syst. Biol., 3, 4.

    Article  Google Scholar 

  • Bruton, T., Lyons, H., Lerat, Y., Stanley, M. and Rasmussen, M.B. (2009). A review of the potential of marine algae as a source of biofuel in Ireland. Sustainable Energy Ireland, Dublin, Ireland.

    Google Scholar 

  • Campbell, M. (2008). Biodiesel: Algae as a Renewable Source for Liquid Fuel. J. Guelph. Engineering, 1, 2–7.

    Google Scholar 

  • Chandra, R., Rohit, M.V., Swamy, Y.V. and Venkata Mohan, S. (2014). Regulatory function of organic carbon supplementation on biodiesel production during growth and nutrient stress phases of mixotrophic microalgae cultivation. Bioresour. Technol., 165, 279–287.

    Article  CAS  Google Scholar 

  • Chang, R.L., Ghamsari, L., Manichaikul, A., Hom, E.F.Y., Balaji, S., Fu, W., Shen, Y., Hao, T., Palsson, B., Salehi-Ashtiani, K. and Papin, J.A. (2011). Metabolic network reconstruction of Chlamydomonas offers insight into light-driven algal metabolism. Mol. Syst. Biol., 7, 518.

    Article  Google Scholar 

  • Chen, C.Y., Yeh, K.L., Aisyah, R., Lee, D.J. and Chang, J.S. (2011). Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: A critical review. Bioresour. Technol., 102, 71–81.

    Article  CAS  Google Scholar 

  • Chisti, Y. and Moo-Young, M. (1986). Review: Disruption of microbial cells for intracellular products. Enzyme Microb Technol., 8, 194–204.

    Article  CAS  Google Scholar 

  • Chisti, Y. (2007). Biodiesel from microalgae. Biotechnol Adv., 25, 294–306.

    Article  CAS  Google Scholar 

  • Demirbas, A. (2011).Competitive liquid biofuels from biomass. Appl Energy, 88, 17–28.

    Article  CAS  Google Scholar 

  • Devi, M.P. and Venkata Mohan (2012). CO2 supplementation to domestic wastewater enhances microalgae lipid accumulation under mixotrophic microenvironment: Effect of sparging period and interval. Bioresour. Technol., 112, 116–123.

    Article  Google Scholar 

  • Devi, M.P., Venkata Subhash, G. and Venkata Mohan, S. (2012). Heterotrophic cultivation of mixed microalgae for lipid accumulation and wastewater treatment during sequential growth and starvation phases. Effect of nutrient supplementation. J. Renew Energy, 43, 276–283.

    Article  Google Scholar 

  • Devi, M.P., Swamy, Y.V. and Venkata Mohan, S. (2013). Nutritional mode influences lipid accumulation in microalgae with the function of carbon sequestration and nutrient supplementation. Bioresour. Technol., 142, 278–286.

    Article  Google Scholar 

  • Ehimen, E. A., Sun, Z. F., & Carrington, C. G. (2010). Variables affecting the in situ transesterification of microalgae lipids. Fuel, 89(3), 677–684.

    Article  CAS  Google Scholar 

  • Ehimen, E.A., Sun, Z.F., Carrington, C.G., Birch, E.J. and Eaton-Rye, J.J. (2011). Anaerobic digestion of microalgae residues resulting from the biodiesel production process. Appl. Energ., 88, 3454–3463.

    Article  CAS  Google Scholar 

  • Energy from Algae (2010). Technical Summary. Scott Maden.

    Google Scholar 

  • Fajardo, A.R., Cerdán, L.E., Medina, A.R., Gabriel, F., Fernández, A. and Moreno, P.A. (2007). Lipid extraction from the microalga Phaeodactylum tricornutum. Eur. J. Lipid. Sci. Technol., 109, 120–126.

    Article  CAS  Google Scholar 

  • Furuta, S., Matsuhashi, H. and Arata, K. (2004). Biodiesel fuel production with solid superacid catalysis in fixed bed reactor under atmospheric pressure. Catal. Commun., 5, 721–723.

    Article  CAS  Google Scholar 

  • Gerpen, V.J. (2005). Biodiesel processing and production. Fuel Process Technol, 86, 1097–1107.

    Article  Google Scholar 

  • Gomez, J.R.O., Aberasturi, G.J., Lopez, C.R. and Belsue, M. (2012). A brief review on industrial alternatives for the manufacturing of glycerol carbonate, a green chemical. Org Process Res Dev., 16, 389–399.

    Article  Google Scholar 

  • Gong, Y. and Jiang, M. (2011). Biodiesel production with microalgae as feed stock: From strains to biodiesel. Biotech Letters, 33, 1269–1284.

    Article  CAS  Google Scholar 

  • Greenwell, H.C., Laurens, L.M.L., Shields, R.J., Lovitt, R.W. and Flynn, K.J. (2010). Placing microalgae on the biofuels priority list: A review of the technological challenges. J. Royal Soc. Interface., 7, 703–726.

    Google Scholar 

  • Hannon, M., Gimpel, J., Tran, M., Rasala, B. and Mayfield, S. (2010). Biofuels from algae: Challenges and potential. Biofuels., 1, 763–784.

    Google Scholar 

  • Harrison, B.B., Marc, E.B. and Anthony, J.M. (2012). Chemical and physical properties of algal methyl ester biodiesel containing varying levels of methyl eicosapentaenoate and methyl docosahexaenoate. Algal Res, 1, 57–69.

    Article  Google Scholar 

  • Harun, R., Danquah, M.K. and Forde, G.M. (2010). Microalgal biomass as a fermentation feedstock for bioethanol production. J. Chem. Technol. Biotechnol., 85, 199–203.

    CAS  Google Scholar 

  • Helwani, Z., Othman, M.R., Aziz, N., Fernando, W.J.N. and Kim, J. (2009). Technologies for production of biodiesel focusing on green catalytic techniques: A review. Fuel Process Technol, 90, 1502–1514.

    Article  CAS  Google Scholar 

  • Ho, S.H., Chen, C.Y., Lee, D.J. and Chang, J.S. (2011). Perspectives on microalgal CO2-emission mitigation systems – A review. Biotechnol. Adv., 29, 189–198.

    Article  CAS  Google Scholar 

  • Hu, B., Min, M., Zhou, W., Li, Y., Mohr, M. and Cheng, Y. (2012). Influence of exogenous CO2 on biomass and lipid accumulation of microalgae Auxenochlorella protothecoides cultivated in concentrated municipal wastewater. Applied Microbiol and Biotechnol., 166, 1661–1673.

    CAS  Google Scholar 

  • Huang, G., Chen, F., Wei, D., Zhang, X. and Chen, G. (2010). Biodiesel production by microalgal biotechnology. Appl. Energ., 87, 38–46.

    Article  CAS  Google Scholar 

  • Johnson, M.B. and Wen, Z.Y. (2010). Development of an attached microalgal growth system for biofuel production. Appl. Microbiol. Biotechnol., 85, 525–534.

    Article  CAS  Google Scholar 

  • Kazamia, E., Czesnick, H., Van Nguyen, T.T., Croft, M.T., Sherwood, E. and Sasso, S. (2012). Mutualistic interactions between vitamin B12-dependent algae and heterotrophic bacteria exhibit regulation. Environ. Microbiol., 14, 1466–1476.

    Article  CAS  Google Scholar 

  • Kim, M.K., Park, J.W., Park, C.S., Kim, S.J., Jeune, K.H. and Chang, M.U. (2007). Enhanced production of Scenedesmus spp. (green microalgae) using a new medium containing fermented swine wastewater. Bioresour. Technol., 98, 2220–2228.

    Article  CAS  Google Scholar 

  • Lee, J.Y., Yoo, C., Jun, S.Y., Ahn, C.Y. and Oh, H.M. (2010). Comparison of several methods for effective lipid extraction from microalgae. Bioresour. Technol., 101, 75–77.

    Article  Google Scholar 

  • Mata, T.M., Martins, A.A. and Caetano, N.S. (2010). Microalgae for biodiesel production and other applications: a review. Renew. Sust. Energ. Rev., 14, 217–232.

    Article  CAS  Google Scholar 

  • Meher, L.C., Sagar, D.V. and Naik, S.N. (2006). Technical aspects of biodiesel production by transesterification: A review. Renew Sust Energ Rev, 10, 248–268.

    Article  CAS  Google Scholar 

  • Mercer, P. and Armenta, R.E. (2011). Developments in oil extraction from microalgae. Eur. J. Lipid. Sci. Technol., 113, 539–547.

    Article  CAS  Google Scholar 

  • Mitra, D., Van Leeuwen, J. and Lamsal, B. (2012). Heterotrophic/mixotrophic cultivation of oleaginous Chlorella vulgaris on industrial co-products. Algal Res., 1, 40–48.

    Article  CAS  Google Scholar 

  • Munoz, R. and Guieysse, B. (2006). Algal-bacterial processes for the treatment of hazardous contaminants: A review. Water Res., 40, 2799–2815.

    Article  CAS  Google Scholar 

  • Mussgnug, J.H., Klassen, V., Schluter, A. and Kruse, O. (2010). Microalgae as substrates for fermentative biogas production in a combined biorefinery concept. J Biotechnol, 150, 51–56.

    Article  CAS  Google Scholar 

  • Neelma, M., Nadia, S., Shagufta, N., Faiza, S. and Farkhanda, M. (2013). Harvesting and processing of microalgae – A review. Sci. Tech. and Dev., 32, 235–243.

    Google Scholar 

  • Nelson, J.A., Savereide, P.B. and Lefebvre, P.A. (1994). The CRY1 gene in Chlamydomons reinhardtii: Structure and use as a dominant selectable marker for nuclear transformation. Mol. Cell Biol., 14, 4011–4019.

    Article  CAS  Google Scholar 

  • Olguin, E.J. (2012). Dual purpose microalgae–bacteria-based systems that treat wastewater and produce biodiesel and chemical products within a biorefinery. Biotechnol. Adv., 30, 1031–1046.

    Article  CAS  Google Scholar 

  • Origin Oil (2010). Algae harvesting, dewatering and extraction a breakthrough technology to transform algae into oil. Worldbiofuels Markets, Amsterdam, The Netherlands. 15–17.

    Google Scholar 

  • Orpez, R., Martinez, M.E., Hodaifa, G., El Yousfi, F., Jbari, N. and Sanchez, S. (2009). Growth of the microalga Botryococcusbraunii in secondarily treated sewage. Desalination, 246, 625–630.

    Article  CAS  Google Scholar 

  • Pearson, H.W. (1996). Expanding the Horizons of Pond Technology and Application in an Environmentally Conscious World. Water Sci Technol., 33, 1–9.

    Article  CAS  Google Scholar 

  • Perez-Garcia, O., de-Bashan, L., Hernandez, J. and Bashan, Y. (2010). Efficiency of growth and nutrient uptake from wastewater by heterotrophic, autotrophic, and mixotrophic cultivation of Chlorella vulgaris immobilized with azopirillum brasilense. J. Phycol., 46, 800–812.

    Google Scholar 

  • Perez-Garcia, O., Escalante, F. M., de-Bashan, L. E., & Bashan, Y. (2011a). Heterotrophic cultures of microalgae: metabolism and potential products. Water research, 45(1), 11–36.

    Google Scholar 

  • Perez-Garcia, R.O., Bashan, Y. and Puente, M.E. (2011b). Organic carbon supplementation of municipal wastewater is essential for heterotrophic growth and ammonium removing by the microalgae Chlorella vulgaris. J. Phycol., 190–199.

    Google Scholar 

  • Pulz, O. (2001). Photobioreactors: Production systems for phototrophic microorganisms. Appl. Microbiol. Biotechnol., 57, 287–293.

    Article  CAS  Google Scholar 

  • Ramanathan, G., Rajarathinam, K., Boothapandi, M., Abirami, D., Ganesamoorthy, G. and Duraipandi (2011). Construction of vertical tubular photobioreactor for microalgae cultivation. J. Algal Biomass Utln., 2, 41–52.

    Google Scholar 

  • Robert, M.H., Christina, E.C., Tom, N.K., Stephen, L.F., Oybek, K. and David, R.S. (2012). Evaluation of environmental impacts from microalgae cultivation in open-air raceway ponds: Analysis of the prior literature and investigation of wide variance in predicted impacts. Algal Research, 1, 83–92.

    Article  Google Scholar 

  • Sarkar, O., Agarwal, M., Kumar, A.N. and Venkata Mohan, S. (2014). Retrofitting hetrotrophically cultivated algae biomass as pyrolytic feedstock for biogas, bio-char and bio-oil production encompassing biorefinery. Bioresour Technol DOI: 10.1016/j.biortech.2014.09.070.

  • Sathish, A. and Sims, R.C. (2012). Biodiesel from mixed culture algae via a wet lipid extraction procedure. Bioresour. Technol., 118, 643–647.

    Article  CAS  Google Scholar 

  • Shelef, G., Sukenik, A. and Green, M. (1984). Microalgae harvesting and processing: A literature review. Report prepared for the US Department of Energy, Technion Research and development Foundation Ltd., Haifa, Israel.

    Google Scholar 

  • Sierra, E., Acien, F.G., Fernandez, J.M., Garcia, J.L., Gonzalez, C. and Molina, E. (2008). Characterization of a flat plate photobioreactor for the production of microalgae. Chem Eng J., 138, 136–147.

    Article  CAS  Google Scholar 

  • Sivakumar, G., Xu, J., Thompson, R.W., Yang, Y., Smith, P.R. and Weathers, P.J. (2012). Integrated green algal technology for bioremediation and biofuel. Bioresour Technol., 107, 1–9.

    Article  CAS  Google Scholar 

  • Srivastava, A. and Prasad, R. (2000). Triglycerides-based diesel fuels. Renew Sus Energ Rev., 4, 111–133.

    Article  CAS  Google Scholar 

  • Stephenson, A.L., Kazamia, E., Dennis, J.E., Howe, C.J., Scott, S.A. and Smith, A.G. (2010). Life-cycle assessment of potential algal biodiesel production in the United Kingdom: A comparison of raceways and air-lift tubular bioreactors. Energ. Fuels, 24, 4062–4077.

    Article  CAS  Google Scholar 

  • Ugwu, C.U., Aoyagi, H. and Uchiyama, H. (2008). Photobioreactors for mass cultivation of algae. Bioresour. Technol., 99, 4021–4028.

    Article  CAS  Google Scholar 

  • Vargha, V. and Truter, P. (2005). Biodegradable polymers by reactive blending transesterification of thermoplastic starch with poly (vinyl acetate) and poly(vinyl acetate-co-butyl acrylate). Eur. Polymer J., 41, 715–726.

    Article  CAS  Google Scholar 

  • Venkata Mohan, S. (2010). Waste to renewable energy: A sustainable and green approach towards production of biohydrogen by acidogenic fermentation. In: Om, Singh, Steve, Harvey (Eds.), Sustainable Biotechnology: Renewable Resources and New Perspectives. Springer. 129–164

    Google Scholar 

  • Venkata Mohan, S., Devi, M.P., Mohanakrishna, G., Amarnath, N., Lenin Babu, M. and Sarma, P.N. (2011). Potential of mixed microalgae to harness biodiesel from ecological water-bodies with simultaneous treatment. Bioresour. Technol., 102, 1109–1117.

    Article  Google Scholar 

  • Venkata Mohan, S. and Devi, M.P. (2012). Fatty acid rich effluent from acidogenic biohydrogen reactor as substrate for lipid accumulation in heterotrophic microalgae with simultaneous treatment. Bioresour. Technol., 123, 627–635.

    Article  CAS  Google Scholar 

  • Venkata Mohan, S., Devi, M.P., Subhash, G.V. and Chandra, R. (2014). Algae oils as fuels (Chap 8). In: Pandey, A., Lee, D.J., Chisti, Y. (Eds), Biofuels from Algae. Elsevier, pp. 155–187 (ISBN: 9780444595584).

    Google Scholar 

  • Venkata Subhash, G. and Venkata Mohan, S. (2014). Deoiled algal cake as feedstock for dark fermentative biohydrogen production: An integrated biorefinery approach. Int J Hydrogen Energy, 39, 9573–9579.

    Article  CAS  Google Scholar 

  • Venkata Mohan, S., Rohit, M.V., Chiranjeevi, P., Chandra, R. and Navaneeth, B. (2014). Heterotrophic Microalgae Cultivation to Synergize Biodiesel Production with Waste Remediation: Progress and Perspectives. Bioresour Technol. DOI:10.1016/j.biortech.2014.10.056.

  • Wahlen, B.D., Willis, R.M. and Seefeldt, L.C. (2011). Biodiesel production by simultaneous extraction and conversion of total lipids from microalgae, cyanobacteria, and wild mixed cultures. Bioresour Technol., 102, 2724–2730.

    Article  CAS  Google Scholar 

  • Watanabe, Y., Shimada, Y., Sugihara, A. and Tominaga, Y. (2001). Enzymatic conversion of waste edible oil to biodiesel fuel in a fixed-bed bioreactor. J. Am. Oil Chem. Soc., 78, 703–707.

    Google Scholar 

  • Weissman, J. (1987). Photobioreactor Design: Comparison of Open Ponds. Bioeng. Biotech., 31, 336–344.

    Article  Google Scholar 

  • Yang, Z., Guo, R., Xu, X., Fan, X. and Luo, S. (2011). Fermentative hydrogen production from lipid-extracted microalgal biomass residues. Appl. Energ., 88, 3468–3472.

    Article  CAS  Google Scholar 

  • Yoo, C., Jun, S.Y., Lee, J.Y., Ahn, C.Y. and Oh, H.M. (2010). Selection of microalgae for lipid production under high level of carbon dioxide. Bioresour. Technol., 101, 71–74.

    Article  Google Scholar 

  • Zhang, Y., Dub, M.A., McLean, D.D. and Kates, M. (2003). Biodiesel production from waste cooking oil: 2 Economic assessment and sensitivity analysis. Bioresour. Technol., 90, 229–240.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Director, CSIR-IICT, Hyderabad for encouragement. Authors acknowledge funding from CSIR in the form of 12th five-year plan project-BioEn (CSC-0116). MVR/SA and PC acknowledge University Grants Commission (UGC) and Council of Scientific and Industrial Research (CSIR) for providing research fellowship respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Venkata Mohan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Capital Publishing Company

About this chapter

Cite this chapter

Mohan, S.V., Rohit, M.V., Chiranjeevi, P., Hariprasad, R., Arora, S. (2015). Integrating Microalgae Cultivation with Wastewater Treatment for Biodiesel Production. In: Das, D. (eds) Algal Biorefinery: An Integrated Approach. Springer, Cham. https://doi.org/10.1007/978-3-319-22813-6_15

Download citation

Publish with us

Policies and ethics