Skip to main content

Spatiotemporal Epidemic Modeling with libSpatialSEIR: Specification, Fitting, Selection, and Prediction

  • Conference paper
  • First Online:
Advances in Geocomputation

Part of the book series: Advances in Geographic Information Science ((AGIS))

  • 1250 Accesses

Abstract

In an increasingly connected world, epidemic modeling techniques are an important tool for understanding epidemic phenomenon and forecasting future pathogen spread. While an extensive literature concerning the application of these techniques to a variety of pathogen life cycles and population contexts has arisen, general-purpose epidemic modeling software has not been forthcoming, especially for computationally challenging stochastic epidemic models. We introduce a general-purpose spatial epidemic modeling framework applicable to many pathogens and describe an open source package for the R statistical computing environment designed to perform such analyses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Brown GD (2014) spatialSEIR: a framework for fitting Bayesian spatial SEIR epidemic models. R package. https://github.com/grantbrown/libSpatialSEIR

  • Brown GD, Oleson JJ, Porter AT (2015) An empirically adjusted approach to reproductive number estimation for stochastic compartmental models: a case study of two Ebola outbreaks. Biometrics. doi:10.1111/biom.12432

    Google Scholar 

  • Cauchemez S, Carrat F, Viboud C, Boëlle P (2004) A Bayesian MCMC approach to study transmission of influenza: application to household longitudinal data. Stat Med 23(22):3469–3487

    Article  Google Scholar 

  • Chis Ster I, Singh BK, Ferguson NM (2009) Epidemiological inference for partially observed epidemics: the example of the 2001 foot and mouth epidemic in Great Britain. Epidemics 1(1):21–34

    Article  Google Scholar 

  • Chowell G, Hengartner N, Castillo-Chavez C, Fenimore P, Hyman J (2004) The basic reproductive number of Ebola and the effects of public health measures: the cases of Congo and Uganda. J Theor Biol 229(1):119–126

    Article  Google Scholar 

  • Cook AR, Otten W, Marion G, Gibson GJ, Gilligan CA (2007) Estimation of multiple transmission rates for epidemics in heterogeneous populations. PNAS 104(51):20392–20397

    Article  Google Scholar 

  • Deardon R, Brooks SP, Grenfell BT, Keeling MJ, Savill NJ et al (2010) Inference for individual-level models of infectious diseases in large populations. Stat Sinica 20(1):239–261

    Google Scholar 

  • Hethcote HW (2000) The mathematics of infectious diseases. SIAM Rev 42(2):599–653

    Article  Google Scholar 

  • Hooten MB, Anderson J, Waller LA (2011) Assessing North American influenza dynamics with a statistical SIRS model. Spat Spatiotemporal Epidemiol 1(2):77–185

    Google Scholar 

  • Jacquez JA, O’Neill P (1991) Reproduction numbers and thresholds in stochastic epidemic models. 1. Homogeneous populations. Math Biosci 107(2):161–186

    Article  Google Scholar 

  • Jewell CP, Keeling MJ, Roberts GO (2009) Predicting undetected infections during the 2007 foot and mouth disease outbreak. J R Soc Interface 6(41):1145–1151

    Article  Google Scholar 

  • Kermack W, McKendrick A (1927) A contribution to the mathematical theory of epidemics. Proc R Soc A 115:700–721

    Article  Google Scholar 

  • Lekone PE, Finkenstädt BF (2006) Statistical inference in a stochastic epidemic SEIR model with control intervention: Ebola as a case study. Biometrics 62(4):1170–1177

    Article  Google Scholar 

  • Porter AT, Oleson JJ (2013) A path-specific SEIR model for use with general latent and infectious time distributions. Biometrics 69(1):101–108

    Article  Google Scholar 

  • Van Boven M, Donker T, van der Lubben M, van Gageldonk-Lafber RB, te Beest DE, Koopmans M, Meijer A, Timen A, Swaan C, Dalhuijsen A, Hahné S, van den Hoek A, Teunis P, van der Sande MAB, WallingaHahne J (2010) Transmission of novel influenza A (H1N1) in households with post-exposure antiviral prophylaxis. PLoS ONE 5(7):e11442

    Google Scholar 

  • Verdasca J, da Gama T, Nunes A, Bernardino NR, Pacheco JM, Gomos MC (2005) Recurrent epidemics in small world networks. J Theor Biol 233(4):553–561

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Grant D. Brown .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this paper

Cite this paper

Brown, G.D., Oleson, J.J. (2017). Spatiotemporal Epidemic Modeling with libSpatialSEIR: Specification, Fitting, Selection, and Prediction. In: Griffith, D., Chun, Y., Dean, D. (eds) Advances in Geocomputation. Advances in Geographic Information Science. Springer, Cham. https://doi.org/10.1007/978-3-319-22786-3_28

Download citation

Publish with us

Policies and ethics