Skip to main content

Scleritome

  • Chapter
  • First Online:
Book cover Dynamic Paleontology

Part of the book series: Springer Geology ((SPRINGERGEOL))

Abstract

What controls the geometry of the scleritome mosaic? Does it have any relationship to the rapid, major morphological changes? Morphogenetic field analysis helps to explain, by means of laws of morphogenetic evolution , the geometrical patterning of sclerites in a scleritome. Many cases of convergent evolution may thus be viewed as torologous relationships because of the underlying toroidal shape of the scleritome grid. Rapid transformation of morphogenetic fields played a role in the process that led to the appearance new phyla during the Cambrian Explosion .

All great deeds and all great thoughts have ridiculous beginnings.

Albert Camus (1913–1960)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abzhanov A, Kaufman TC (2000) Crustacean (Malacostracan) Hox genes and the evolution of the arthropod trunk. Development 127(11):2239–2249

    Google Scholar 

  • Warén A et al (2003) A hot-vent gastropod with iron sulfide dermal sclerites. Science 302(5647):1007

    Google Scholar 

  • Ausich WI, Babcock LE (1998) The phylogenetic position of Echmatocrinus brachiatus, a probable octocoral from the Burgess Shale. Palaeontology 41(2):193–202

    Google Scholar 

  • Bengtson S (1991) Oddballs from the Cambrian start to get even. Nature 351:184–185

    Article  Google Scholar 

  • Bengtson S (1992) The cap-shape Cambrian fossil Maikhanella and the relationship between coeloscleritophorans and molluscs. Lethaia 25(4):401–420

    Article  Google Scholar 

  • Berg LS (1969) Nomogenesis: evolution determined by law. MIT Press, Cambridge

    Google Scholar 

  • Boardman RS et al (1987) Fossil invertebrates. Blackwell, Palo Alto, California

    Google Scholar 

  • Briggs DEG et al (1983) The conodont animal. Lethaia 16(1):1–14

    Article  Google Scholar 

  • Budd GE (2015) Early animal evolution and the origins of nervous systems. Phil Trans R Soc B 370:20150037

    Article  Google Scholar 

  • Butterfield NJ (2008) An early Cambrian radula. J Paleontol 82(3):543–554

    Article  Google Scholar 

  • Caron J-B et al (2013) Beyond the Burgess Shale: Cambrian microfossils track the rise and fall of hallucigeniid lobopodians. Proc Royal Soc B. doi:10.1098/rspb.2013.1613

    Google Scholar 

  • Cerda IA, Powell JE (2010) Dermal armor histology of Saltasaurus loricatus, an Upper Cretaceous sauropod dinosaur from Northwest Argentina. Acta Palaeont Pol 55(3):389–398

    Article  Google Scholar 

  • Chen J-Y et al (1989) Early Cambrian netted scale-bearing worm-like sea animal. Acta Palaeont Sin 28:1–16

    Google Scholar 

  • Clarkson ENK (1998) Invertebrate palaeontology and evolution, 4th edn. Blackwell, Oxford

    Google Scholar 

  • Clausen SB et al (2010) The absence of echinoderms from the Lower Cambrian Chengjiang fauna of China: Palaeoecological and palaeogeographical implications. Palaeogeogr Palaeoclimatol Palaeoecol 294(3–4):133–141

    Article  Google Scholar 

  • Conway Morris S (1998) The crucible of creation: the Burgess Shale and the rise of animals. Oxford University Press, Oxford

    Google Scholar 

  • Conway Morris S (2006) Darwin’s dilemma: the realities of the Cambrian ‘explosion’. Phil Trans R Soc B 361:1069–1083

    Article  Google Scholar 

  • Conway Morris S, Peel JS (1995) Articulated halkieriids from the lower Cambrian of North Greenland and their role in early Cambrian protostome evolution. Phil Trans R Soc Lond B 347:305–358

    Article  Google Scholar 

  • Darwin C (1872) The expression of emotion in man and animals. John Murray, London

    Book  Google Scholar 

  • Davidson EH (1993) Later embryogenesis: regulatory circuitry in morphogenetic fields. Development 118:665–690

    Google Scholar 

  • de Ricqlès A, Bolt JR (1983) Jaw growth and tooth replacement in Captorhinus aguti (Reptilia: Captorhinomorpha): a morphological and histological analysis. J Vert Paleontol 3(1):7–24

    Article  Google Scholar 

  • DeMar R (1972) Evolutionary implications of zahnreihen. Evolution 26(3):435–450

    Article  Google Scholar 

  • Denton MJ (2013) The types: a persistent structuralist challenge to darwinian pan-selectionism. BIO-Complex 3:1–18

    Google Scholar 

  • Depéret C (1896) Note sur le dinosauriens sauropodes et théropodes du Crétaceé Supérieur de Madagascar. Bull Soc Géol France 24:176–194

    Google Scholar 

  • Donoghue PCJ, Rücklin M (2014) The ins and outs of the evolutionary origin of teeth. Evol Dev 18(1):19–30

    Article  Google Scholar 

  • Donovan SK et al (1994) Lower Cambrian fossil Volborthella: The whole truth or just a piece of the beast? Comment and reply. Geology 22(7):665–666

    Article  Google Scholar 

  • Dwight T (1911) Thoughts of a Catholic anatomist. Longmans, Green and Company, New York

    Google Scholar 

  • Dzik J (2011) Possible Ediacaran ancestry of the halkieriids. Palaeontol Can 21:205–218

    Google Scholar 

  • Emig CC et al (2015) Scientific death-knell against databases? Errors induced by database manipulations and its consequences. Carnets de Geol 15(16):231–238

    Article  Google Scholar 

  • Erwin DH, Valentine JW (2013) The Cambrian explosion: the construction of animal biodiversity. Roberts and Company, Greenwood Village, Colorado

    Google Scholar 

  • Fedonkin MA et al (2012) A new metazoan from the Vendian of the White Sea, Russia, with possible affinities to the ascidians. Paleontol J. doi:10.1134/S0031030112010042

    Google Scholar 

  • Gompel N, Prud’homme B (2009) The causes of repeated genetic evolution. Dev Biol 332(1):36–47

    Article  Google Scholar 

  • Haught JF (2015) Teilhard, big history and religion: a look inside. Teilhard Studies 71:1–23

    Google Scholar 

  • Hill RV (2006) Comparative anatomy and histology of xenarthran osteoderms. J Morph 267(12):1441–1460

    Article  Google Scholar 

  • Hiscock TW, Megason SG (2015) Orientation of Turing-like patterns by morphogen gradients and tissue anisotopies. Cell Syst 1(6):408–416

    Article  Google Scholar 

  • Holmer LE et al (2002) A stem group brachiopod from the lower Cambrian: support for a Micrina (halkieriid) ancestry. Palaeontology 45(5):875–882

    Article  Google Scholar 

  • Hughes NC (2003) Trilobite body patterning and the evolution of arthropod tagmosis. BioEssays 25(4):386–395

    Article  Google Scholar 

  • Huxley TH (1924) A liberal education. Haldeman-Julius, Girard, Kansas

    Google Scholar 

  • Jockusch H, Dress A (2003) From sphere to torus: a topological view of the metazoan body plan. Bull Math Biol 65:57–65

    Article  Google Scholar 

  • Kauffman SA (1993) The origins of order: self-organization and selection in evolution. Oxford University Press, New York

    Google Scholar 

  • Kline L, Currey JD (1970) Echinoid skeleton: absence of a collagenous matrix. Science 169:1209–1210

    Article  Google Scholar 

  • Kondo H (ed) (1972) The illustrated encyclopedia of the animal kingdom, vol 19. Danbury Press and Fratelli Fabbri Editori, Milan

    Google Scholar 

  • Landing E (1984) Skeleton of lapworthellids and the suprageneric classification of tommotiids (Early and Middle Cambrian phosphatic problematica). J Paleontol 58:1380–1398

    Google Scholar 

  • Lei L et al (2010) Maternal control of early mouse development. Development 137(6):859–870

    Article  Google Scholar 

  • Lepelstat AL et al (2010) Dentine canals in Cambro-Ordovician ostracoderms and Cretaceous-Eocene pycnodont fish. Geol Soc America Abst Prog 42(5):94

    Google Scholar 

  • Lowenstam HA (1974) Impact of life on chemical and physical processes. In: Goldberg E (ed) The sea. Wiley, New York, pp 715–796

    Google Scholar 

  • Maisey JG (1996) Discovering fossil fishes. Holt, New York

    Google Scholar 

  • Matthews SC, Missarzhevsky VV (1975) Small shelly fossils of late Precambrian and Early Cambrian age: A review of recent work. J Geol Soc 131(3):289–304

    Article  Google Scholar 

  • McMenamin MAS (1992) Two new species of the Cambrian genus Mickwitzia. J Paleontol 66(1):173–182

    Google Scholar 

  • McMenamin MAS (1998) The garden of Ediacara: discovering the first complex life. Columbia Univ Press, New York

    Google Scholar 

  • McMenamin MAS (2008) Early Cambrian sponge spicules from the Cerro Clemente and Cerro Rajón, Sonora. México Geol Acta 6(4):363–367

    Google Scholar 

  • McMenamin MAS (2009) Paleotorus: the laws of morphogenetic evolution. Meanma Press, South Hadley, Massachusetts

    Google Scholar 

  • McMenamin MAS (2013) Breakthrough on the Cambrian explosion. Bioscience 63(10):834–835

    Article  Google Scholar 

  • McMenamin MAS (2015) Paramphibia: a new class of tetrapods. Meanma Press, South Hadley, Massachusetts

    Google Scholar 

  • Moczydlowska M et al (2015) Ecdysozoan-like sclerites among Ediacaran microfossils. Geol Mag 152(6):1145–1148

    Article  Google Scholar 

  • Newman SA, Bhat R (2008) Dynamical patterning modules: physico-genetic determinants of morphological development and evolution. Phys Biol. doi:10.1088/1478-3975/5/1/015008

    Google Scholar 

  • Nixon M (1996) Morphology of the jaws and radula in ammonoids. In: Landman NH et al (eds) Ammonoid paleobiology. Plenum, New York, pp 23–42

    Chapter  Google Scholar 

  • Okazaki K (1970) Skeleton formation in the echinoid larva. Embryologia 5:283–320

    Article  Google Scholar 

  • Pisa D et al (2015) Different brain regions are infected with fungi in Alzheimer’s disease. Sci R. doi:10.1038/srep15015

    Google Scholar 

  • Pivar S (2009) On the origin of form: evolution by self-organization. North Atlantic Books, Berkeley, California

    Google Scholar 

  • Rücklin M, Donoghue PCJ (2015) Romundina and the evolutionary origin of teeth. Biol Let. doi:10.1098/rsbl.2015.0326

    Google Scholar 

  • Rudkin DM et al (2003) The world’s biggest trilobite—Isotelus rex new species from the Upper Ordovician of northern Manitoba. Can J Paleontol 77(1):99–112

    Article  Google Scholar 

  • Ryan T (2003) Stratigraphy, paleontology and evolutionary change in the Ordovician Manitou Formation, Colorado. Honors Thesis, Mount Holyoke College, South Hadley, MA

    Google Scholar 

  • Seilacher A (1972) Divaricate patterns in pelecypod shells. Lethaia 5(3):325–343

    Article  Google Scholar 

  • Shapiro JA (2011) Evolution: a view from the 21st century. FT Press, Upper Saddle River, New Jersey

    Google Scholar 

  • Shu D-G et al (2002) Ancestral echinoderms from the Chengjiang deposits of China. Nature 430:422–428

    Article  Google Scholar 

  • Skovsted CB et al (2011) Scleritome construction, biofacies, biostratigraphy and systematics of the tommotiid Eccentrotheca helenia sp. nov. from the Early Cambrian of South Australia. Palaeontology 54(2):253–286

    Article  Google Scholar 

  • Smith MR (2014) Ontogeny, morphology and taxonomy of the soft-bodied Cambrian ‘mollusc’ Wiwaxia. Palaeontology 57:215–229

    Article  Google Scholar 

  • Smith MM, Johanson Z (2003) Separate evolutionary origins of teeth from evidence in fossil jawed vertebrates. Science 299(5610):1235–1236

    Article  Google Scholar 

  • Smith AB, Zamora S (2013) Cambrian spiral-plated echinoderms from Gondwana reveal the earliest pentaradial body plan. Proc R Soc B. doi:10.1098/rspb.2013.1197

    Google Scholar 

  • Sprinkle J (1973) Morphology and evolution of blastozoan echinoderms. Harvard University Press, Cambridge, MA

    Book  Google Scholar 

  • Sprinkle J, Collins D (1995) Echmatocrinus revisited: still an echinoderm and probably the oldest crinoid. Geol Soc Am Abst Prog 27:113–114

    Google Scholar 

  • Sprinkle J, Collins D (2006) New eocrinoids from the Burgess Shale, southern British Columbia, Canada, and the Spence Shale, northern Utah, USA. Can J Earth Sci 43(3):303–322

    Article  Google Scholar 

  • Steiner M et al (2004) Lower Cambrian small shelly fossils of northern Sichuan and southern Shaanxi (China), and their biostratigraphic importance. Geobios 37(2):259–275

    Article  Google Scholar 

  • Stinchcomb BL, Darrough G (1995) Some molluscan problematica from the Upper Cambrian-Lower Ordovician of the Ozark Uplift. J Paleontol 69(1):52–65

    Google Scholar 

  • Stokstad E (2003) Primitive jawed fishes had teeth of their own design. Science 299(5610):1164

    Article  Google Scholar 

  • Tasch P (1980) Paleobiology of the invertebrates: data retrieval from the fossil record. John Wiley, New York

    Google Scholar 

  • Teichert C, Kummel B (1960) Size of endocerid cephalopods. Brevoria 128:1–7

    Google Scholar 

  • Ubaghs G (1975) Early Paleozoic echinoderms. An Rev Earth Planet Sci 3:79–81

    Article  Google Scholar 

  • Vickryous MK, Hall BK (2006) Osteoderm morphology and development in the nine-banded armadillo, Dasypus novemcinctus (Mammalia, Xenarthra, Cingulata). J Morph 267:1273–1283

    Article  Google Scholar 

  • Vorobyeva EI (2003) A new approach to the problem of tetrapod origin. Paleontol J 37:449–460

    Google Scholar 

  • Wells J (2014) Membrane patterns carry ontogenetic information that is specified independently of DNA. BIO-complexity 2:1–28

    Google Scholar 

  • White AW et al (2010) Megafaunal meiolaniid horned turtles survived until early human settlement in Vanuatu, Southwest Pacific. Proc Nat Acad Sci 107(35):15512–15516

    Article  Google Scholar 

  • Woods JW (2015) Influence of Coriolis force on the growth of body hair. Ann Improb Res 21(2):6–7

    Google Scholar 

  • Yang J et al (2014) Articulated Wiwaxia from the Cambrian Stage 3 Xiaoshiba Lagerstätte. Sci R. doi:10.1038/srep04643

    Google Scholar 

  • Yanga J et al (2015) A superarmored lobopodian from the Cambrian of China and early disparity in the evolution of Onychophora. Proc Nat Acad Sci. doi:10.1073/pnas.1505596112

    Google Scholar 

  • Zamora S et al (2012) Plated Cambrian bilaterians reveal the earliest stages of echinoderm evolution. PLoS ONE. doi:10.1371/journal.pone.0038296

    Google Scholar 

  • Zamora S et al (2013) Cambrian echinoderm diversity and palaeobiogeography. Geol Soc Lond Mem 38:157–171

    Article  Google Scholar 

  • Zhang Z et al (2013) A sclerite-bearing stem group entoproct from the early Cambrian and its implications. Sci Rep. doi:10.1038/srep01066

    Google Scholar 

  • Zhang H et al (2015a) Armored kinorhynch-like scalidophoran animals from the early Cambrian. Sci Rep. doi:10.1038/srep16521

    Google Scholar 

  • Zhang Z et al (2015b) New reconstruction of the Wiwaxia scleritome, with data from Chengjiang juveniles. Sci Rep. doi:10.1038/srep14810

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark A. S. McMenamin .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

McMenamin, M.A.S. (2016). Scleritome. In: Dynamic Paleontology. Springer Geology. Springer, Cham. https://doi.org/10.1007/978-3-319-22777-1_1

Download citation

Publish with us

Policies and ethics