How to Increase the Effectiveness of the Hepatitis Diagnostics by Means of Appropriate Machine Learning Methods

  • Alexandra Lukáčová
  • František Babič
  • Zuzana Paraličová
  • Ján ParaličEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9267)


This paper presents how to improve the diagnostic process of hepatitis B and C based on collected questionnaires from patients hospitalized in all regional departments of infectology in Slovakia. Performed experiments were oriented in two directions: economic demands of the recommended treatment based on realized diagnostics and possible improvement of hepatitis diagnostics by means of exploratory and predictive analysis of additional information provided by patients. Exploratory data analysis was used to confirm or to reject some expected relationships between input attributes (e.g. ager or gender) and target diagnosis. Also, predictive mining resulted into interesting decision rules that can be used in medical practice as supporting information at an early stage of the diagnostic process. Finally, analysis of the treatment economic demands based on the estimated costs showed the need for timely and quality diagnostics to minimize the percentage of patients for which was hepatitis diagnosed late.


Hepatitis CHAID Cost-benefit method 



This publication is the result of the Project implementation: University Science Park TECHNICOM for Innovation Applications Supported by Knowledge Technology, ITMS: 26220220182, supported by the Research & Development Operational Programme funded by the ERDF (50 %); supported also by the Slovak Grant Agency of the Ministry of Education and Academy of Science of the Slovak Republic under grant No. 1/1147/12 (50 %).


  1. 1.
    Schréter, I., Kristian, P., Klement, C., Kohútová, D., Jarčuška, P., Maďarová, L., Avdičová, M., Máderová, E.: Prevalencia infekcie vírusom hepatitídy C v Slovenskej republike. Klin Mikrobiol Inf Lék 13(2), 54–58 (2007)Google Scholar
  2. 2.
    Lee, T.A., Veenstra, D.L., Iloeje, U.H., Sullivan, S.D.: Cost of chronic hepatitis B infection in the United States. J. Clin. Gastroenterol. 38, 144–147 (2004)CrossRefGoogle Scholar
  3. 3.
    Leidner, A.J., Chesson, H.W., Xu, F., Ward, J.W., Spradling, P.R., Holmberg, S.D.: Cost-effectiveness of hepatitis C treatment for patients in early stages of liver disease. Hepatology 61, 1860–1869 (2015). doi: 10.1002/hep.27736 CrossRefzbMATHGoogle Scholar
  4. 4.
    Chen, X., Ma, L., Chu, N., Hu, Y.: Diagnosis based on decision tree and discrimination analysis for chronic hepatitis b in TCM. In: Proceedings of 2011 IEEE International Conference on Bioinformatics and Biomedicine Workshops (BIBMW 2011), pp. 817–822. doi: 10.1109/BIBMW.2011.6112478
  5. 5.
    Sartakht, J.S., Zangooei, M.H., Mozafari, K.: Hepatitis disease diagnosis using a novel hybrid method. Comput. Methods Programs Biomed. 108(2), 570–579 (2011). ElsevierCrossRefGoogle Scholar
  6. 6.
    Sathyadevi, G.: Application of CART algorithm in hepatitis disease diagnosis. In: Proceedings of IEEE Recent Trends in Information Technology (ICRTIT 2011), pp. 1283–1287 (2011)Google Scholar
  7. 7.
    Kanik, T.: Hepatitis disease diagnosis using Rough Set - modification of the pre-processing algorithm. Inf. Commun. Technol. 1(1), 47–50 (2012). International Conference 2012MathSciNetzbMATHGoogle Scholar
  8. 8.
    Kaya, Y., Uyar, M.: A hybrid decision support system based on rough set and extreme learning machine for diagnosis of hepatitis disease. Appl. Soft Comput. 13(8), 3429–3438 (2013). ElsevierCrossRefGoogle Scholar
  9. 9.
    Roslina, A.H., Noraziah, A.: Prediction of Hepatitis Prognosis using support vector machine and wrapper method. In: Proceeding of IEEE Fuzzy Systems and Knowledge Discovery (FSKD 2010), pp. 2209–2211 (2010)Google Scholar
  10. 10.
    Rarwan, A.A.A., Hafeez, T.E., Mamdouh, H.: An analysis of hepatitis C virus prediction using different data mining techniques. Int. J. Comput. Sci. Eng. Inf. Technol. Res. (IJCSEITR) 3(4), 209–220 (2013)zbMATHGoogle Scholar
  11. 11.
    Kass, G.V.: An exploratory technique for investigating large quantities of categorical data. Appl. Stat. 29(2), 119–127 (1980)CrossRefGoogle Scholar
  12. 12.
    Vranova, J., Horak, J., Kratka, K., Hendrichova, M., Kovarikova, K.: ROC analysis and the use of cost-benefit analysis for determination of the optimal cut-point. J. Czech Phys. 148, 410–415 (2009)Google Scholar
  13. 13.
    McNeill, B.J., Keeler, E., Adelstein, S.J.: Primer on certain elements of medical decision making, with comments on analysis ROC. N. Engl. J. Med. 5, 211–215 (1975)CrossRefGoogle Scholar
  14. 14.
    Metz, C.E.: Basic principles of ROC analysis. Seminars Nucl. Med. 8, 283–298 (1978)CrossRefGoogle Scholar
  15. 15.
    Lopez-Raton, M., Rodriguez-Alvarez, M.X., Suarez, C.C., Sampedro, F.G.: OptimalCutpoints: an R package for selecting optimal cutpoints in diagnostic tests. J. Stat. Softw. 61(8), 1–36 (2014)Google Scholar
  16. 16.
    Kerber, R.: ChiMerge: discretization of numeric attributes. In: Proceedings of the Tenth National Conference on Artificial Intelligence, pp. 123–128 (1992)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Alexandra Lukáčová
    • 1
  • František Babič
    • 1
  • Zuzana Paraličová
    • 2
  • Ján Paralič
    • 1
    Email author
  1. 1.Faculty of Electrical Engineering and Informatics, Department of Cybernetics and Artificial IntelligenceTechnical University of KošiceKošiceSlovakia
  2. 2.Medical FacultyUniversity of Pavol Jozef ŠafárikKošiceSlovakia

Personalised recommendations