Artificial Neural Networks in Diagnosis of Liver Diseases

  • José NevesEmail author
  • Adriana Cunha
  • Ana Almeida
  • André Carvalho
  • João Neves
  • António Abelha
  • José Machado
  • Henrique Vicente
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9267)


Liver diseases have severe patients’ consequences, being one of the main causes of premature death. These facts reveal the centrality of one`s daily habits, and how important it is the early diagnosis of these kind of illnesses, not only to the patients themselves, but also to the society in general. Therefore, this work will focus on the development of a diagnosis support system to these kind of maladies, built under a formal framework based on Logic Programming, in terms of its knowledge representation and reasoning procedures, complemented with an approach to computing grounded on Artificial Neural Networks.


Liver disease Healthcare Logic Programming Knowledge representation and reasoning Artificial neuronal networks 



This work has been supported by FCT – Fundação para a Ciência e Tecnologia within the Project Scope UID/CEC/00319/2013.


  1. 1.
    Lombard, M.: Liver disease. In: Howard, S. (ed.) Annual Report of the Chief Medical Officer, Surveillance. On the State of the Public’s Health, vol. 2012, pp. 95–108 (2012)Google Scholar
  2. 2.
    Day, C.P.: Genes or environment to determine alcoholic liver disease and nonalcoholic fatty liver disease. Liver Int. 26, 1021–1028 (2006)CrossRefGoogle Scholar
  3. 3.
    Koteish, A., Diehi, A.M.: Obesity and liver disease. Curr. Treat. Options Gastroenterol. 4, 101–105 (2001)CrossRefGoogle Scholar
  4. 4.
    Corey, K.E., Kaplan, L.M.: Obesity and liver disease: the epidemic of the twenty-first century. Clin. Liver Dis. 18, 1–18 (2014)CrossRefGoogle Scholar
  5. 5.
    Ahmed, M.H., Byrne, C.D.: Non-alcoholic fatty liver disease. In: Byrne, C.D., Wild, S.H. (eds.) Metabolic Syndrome, pp. 245–277. Wiley-Blackwell, Chichester (2011)CrossRefGoogle Scholar
  6. 6.
    Yeh, M.M., Brunt, E.M.: Pathological features of fatty liver disease. Gastroenterology 147, 754–764 (2014)CrossRefGoogle Scholar
  7. 7.
    Luedde, T., Kaplowitz, N., Schwabe, R.F.: Cell death and cell death responses in liver disease: mechanisms and clinical relevance. Gastroenterology 147, 765–783 (2014)CrossRefGoogle Scholar
  8. 8.
    Martin, P., Friedman, L.S.: Assessment of liver function and diagnostic studies. In: Friedman, L.S., Keeffe, E.B. (eds.) Handbook of Liver Disease, 3rd edn, pp. 1–19. Elsevier Saunders, Philadelphia (2011)Google Scholar
  9. 9.
    Maruyama, S., Hirayama, C., Yamamoto, S., Koda, M., Udagawa, A., Kadowaki, Y., Inoue, M., Sagayama, A., Umeki, K.: Red blood cell status in alcoholic and non-alcoholic liver disease. J. Lab. Clin. Med. 138, 332–337 (2001)CrossRefGoogle Scholar
  10. 10.
    Rockey, D.C., Caldwell, S.H., Goodman, Z.D., Nelson, R.C., Smith, A.D.: Liver biopsy. Hepatology 49, 1017–1044 (2009)CrossRefzbMATHGoogle Scholar
  11. 11.
    Chen, W.Y., Rosner, B., Hankinson, S.E., Graham, A., Colditz, G.A., Willett, W.C.: Moderate alcohol consumption during adult life, drinking patterns, and breast cancer risk. J. Am. Med. Assoc. 306, 1884–1890 (2011)CrossRefzbMATHGoogle Scholar
  12. 12.
    Go, A.S., Mozaffarian, D., Roger, V.L., Benjamin, E.J., Berry, J.D., Blaha, M.J., Dai, S., Ford, E.S., Fox, C.S., Franco, S., Fullerton, H.J., Gillespie, C., Hailpern, S.M., Heit, J.A., Howard, V.J., Huffman, M.D., Judd, S.E., Kissela, B.M., Kittner, S.J., Lackland, D.T., Lichtman, J.H., Lisabeth, L.D., Mackey, R.H., Magid, D.J., Marcus, G.M., Marelli, A., Matchar, D.B., McGuire, D.K., Mohler 3rd, E.R., Moy, C.S., Mussolino, M.E., Neumar, R.W., Nichol, G., Pandey, D.K., Paynter, N.P., Reeves, M.J., Sorlie, P.D., Stein, J., Towfighi, A., Turan, T.N., Virani, S.S., Wong, N.D., Woo, D., Turner, M.B.: on behalf of the American Heart Association Statistics Committee and Stroke Statistics Subcommittee: Heart disease and stroke statistics — 2014 update: a report from the American Heart Association. Circulation 129, e28–e292 (2014)CrossRefGoogle Scholar
  13. 13.
    Neves, J.: A logic interpreter to handle time and negation in logic databases. In: Muller, R.L., Pottmyer, J.J. (eds.) Proceedings of the 1984 Annual Conference of the ACM on The Fifth Generation Challenge, pp. 50–54. Association for Computing Machinery, New York (1984)CrossRefGoogle Scholar
  14. 14.
    Neves, J., Machado, J., Analide, C., Abelha, A., Brito, L.: The halt condition in genetic programming. In: Neves, J., Santos, M.F., Machado, J.M. (eds.) EPIA 2007. LNCS (LNAI), vol. 4874, pp. 160–169. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  15. 15.
    Cortez, P., Rocha, M., Neves, J.: Evolving time series forecasting ARMA models. J. Heuristics 10, 415–429 (2004)CrossRefGoogle Scholar
  16. 16.
    Kakas, A., Kowalski, R., Toni, F.: The role of abduction in logic programming. In: Gabbay, D., Hogger, C., Robinson, I. (eds.) Handbook of Logic in Artificial Intelligence and Logic Programming, vol. 5, pp. 235–324. Oxford University Press, Oxford (1998)Google Scholar
  17. 17.
    Pereira, L.M., Anh, H.T.: Evolution prospection. In: Nakamatsu, K., Phillips-Wren, G., Jain, L.C., Howlett, R.J. (eds.) New Advances in Intelligent Decision Technologies. SCI, vol. 199, pp. 51–63. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  18. 18.
    Lucas, P.: Quality checking of medical guidelines through logical abduction. In: Coenen, F., Preece, A., Mackintosh, A. (eds.) Proceedings of AI-2003 (Research and Developments in Intelligent Systems XX), pp. 309–321. Springer, London (2003)Google Scholar
  19. 19.
    Machado, J., Abelha, A., Novais, P., Neves, J., Neves, J.: Quality of service in healthcare units. Int. J. Comput. Aided Eng. Technol. 2, 436–449 (2010)CrossRefzbMATHGoogle Scholar
  20. 20.
    Cardoso, L., Marins, F., Magalhães, R., Marins, N., Oliveira, T., Vicente, H., Abelha, A., Machado, J., Neves, J.: Abstract computation in schizophrenia detection through artificial neural network based systems. Sci. World J. 2015, 1–10 (2015). Article ID 467178CrossRefGoogle Scholar
  21. 21.
    World Health Organization: Obesity and overweight. Fact Sheet Number 311.
  22. 22.
    Heyward, V.H., Wagner, D.R.: Applied Body Composition Assessment, 2nd edn. Human Kinetics, Champaign (2004)Google Scholar
  23. 23.
  24. 24.
    Kerr, W.C., Stockwell, T.: Understanding standard drinks and drinking guidelines. Drug Alcohol Rev. 31, 200–205 (2012)CrossRefGoogle Scholar
  25. 25.
    Vicente, H., Dias, S., Fernandes, A., Abelha, A., Machado, J., Neves, J.: Prediction of the quality of public water supply using artificial neural networks. J. Water Supply Res. Technol. AQUA 61, 446–459 (2012)CrossRefGoogle Scholar
  26. 26.
    Salvador, C., Martins, M.R., Vicente, H., Neves, J., Arteiro, J.M., Caldeira, A.T.: Modelling molecular and inorganic data of amanita ponderosa mushrooms using artificial neural networks. Agrofor. Syst. 87, 295–302 (2013)CrossRefGoogle Scholar
  27. 27.
    Carneiro, D., Novais, P., Andrade, F., Zeleznikow, J., Neves, J.: Using case-based reasoning and principled negotiation to provide decision support for dispute resolution. Knowl. Inf. Syst. 36, 789–826 (2013)CrossRefGoogle Scholar
  28. 28.
    Mendes, R., Kennedy, J., Neves, J.: The fully informed particle swarm: simpler, maybe better. IEEE Trans. Evol. Comput. 8, 204–210 (2004)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • José Neves
    • 1
    Email author
  • Adriana Cunha
    • 2
  • Ana Almeida
    • 2
  • André Carvalho
    • 2
  • João Neves
    • 3
  • António Abelha
    • 1
  • José Machado
    • 1
  • Henrique Vicente
    • 4
  1. 1.Centro AlgoritmiUniversidade Do MinhoBragaPortugal
  2. 2.Departamento de InformáticaUniversidade Do MinhoBragaPortugal
  3. 3.Drs. Nicolas and AspDubaiUnited Arab Emirates
  4. 4.Departamento de Química, Centro de Química de Évora, Escola de Ciências e TecnologiaUniversidade de ÉvoraÉvoraPortugal

Personalised recommendations